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Abstract. Agent systems based on the Belief, Desire and Intention
model of Rao and Georgeff have been used for a number of success-
ful applications. However, it is often difficult to learn how to apply such
systems, due to the complexity of both the semantics of the system and
the computational model. In addition, there is a gap between the seman-
tics and the concepts that are presented to the programmer. One way to
bridge this gap is to re-cast the foundations of such systems into a logic
programming framework. In particular, the integration of backward- and
forward-chaining techniques for linear logic provides a natural starting
point for this investigation. In this paper we discuss the language design
issues for such a system, and particularly the way in which the potential
choices for rule evaluation in a forward-chaining manner is crucial to the
behaviour of the system.

1 Introduction

An increasingly popular programming paradigm is that of agent-oriented pro-
gramming. This paradigm, often described as a natural successor to object-
oriented programming [18], is highly suited for applications which are embedded
in complex dynamic environments, and is based on human concepts, such as
beliefs, goals and plans. This allows a natural specification of sophisticated soft-
ware systems in terms that are similar to human understanding, thus permitting
programmers to concentrate on the critical properties of the application rather
than getting absorbed in the intricate detail of a complicated environment. Agent
technology has been used in areas for applications such as air traffic control, au-
tomated manufacturing, and maintenance tasks on the space shuttle [19].

There are many possible conceptions of agent-oriented programming. How-
ever a common theme [8, 35] is that agent systems should include properties such
as

– pro-activeness: the agent has an agenda to pursue and will persist in trying
to achieve its aims



– reactiveness: the agent will notice and respond to changes in the environment
– autonomy: the agent will act without necessarily being instructed to take

particular steps
– situated: the agent both influences and is influenced by the environment

around it

Other possible attributes of agent systems include being social, (i.e. teaming
up with other agents in order to achieve common goals), learning (i.e. taking note
of previous actions and adjusting future actions accordingly), and rationality,
(i.e. working to achieve its aims, and not working against them).

One of the most popular and successful technical realisations of such con-
ceptions is the framework of Rao and Georgeff [28], in which the notions of
Belief, Desire and Intention are central, and hence are often referred to as BDI
agents. Roughly speaking, beliefs represent the agent’s current knowledge about
the world, including information about the current state of the environment in-
ferred from perception devices (such as cameras or microphones) and messages
from other agents, as well as internal information. Desires represent a state which
the agent is trying to achieve, such as the safe landing of all planes currently
circling the airport, or the achievement of a certain financial return on the stock
market. Intentions are the chosen means to achieve the agent’s desires, and are
generally implemented as plans (which may be thought of as procedures which
come with pre-conditions (to determine when a plan is applicable) and intended
outcomes (to state what is achieved upon the successful completion of the plan)).

Rao and Georgeff gave both a logical system incorporating these concepts
[28] (a version of temporal logic extended to include the appropriate notions of
belief, desire and intention) and an architecture for the execution of programs
following the BDI paradigm [29].

Whilst BDI-based systems have been successfully applied in a number of
areas, there remain some foundational and design issues to be solved. One such
issue is the “gap” between the BDI theory, which is based on branching-time
temporal logic (in which there is only one past but many possible futures) and the
BDI architectures on which systems such as dMARS[6], JACK[1] and JAM[17]
are based. The BDI theory has an elegant description of the relationship between
beliefs, desires and intentions via possible worlds, but the architectures tends to
deal in beliefs, events and plans, and it is not altogether obvious how these relate
to the given semantics (although the latter can clearly be seen as an inspiration
and specification of the ideal behaviour). The closure of this gap is not helped by
the development of purely model-theoretic approaches to the semantics of such
systems, with a corresponding lack of emphasis on the proof-theoretical aspects
(although [30] is a notable step in this direction).

A second difficulty, particularly when it comes to making agent-oriented pro-
gramming accessible to a wide audience, is the complexity of the BDI semantics.
Whilst there is no magical way to simplify an inherently complex system, it has
generally been the case that successful applications of this technology has come
from either the developers of the agent system or from groups who have relied on
a significant amount of input from a BDI expert (who are generally in very short



supply). Hence in order for BDI agents to become significantly more widespread,
a simpler means of understanding the system is required [33].

One way to address this is to re-cast the basic agent model into a logic
programming framework. As noted by Kowalski and Sadri [21] the main technical
question here is to determine how to incorporate actions and reactive behaviour
into a logic programming environment (which has traditionally been very strong
on backward-chaining methods, and thus is closely related to traditional planning
techniques).

Our approach is based on the use of linear logic [10], a logic designed with
bounded resources in mind. In particular, linear logic is not only a conservative
extension of classical logic (so that classical reasoning, where appropriate, may
be used), but also has been shown to be a natural way to model concurrency,
database updates and state-based transitions [11, 12, 15]. In particular, it has
been shown that actions, such as those required by the classic blocks world
scenario, can be modelled simply and naturally in linear logic [22, 23]. Given
also the existence of a number of logic programming languages based on linear
logic (such as LO [4], Lolli [15], Forum [24], LLP [16] and Lygon [12]), it seems
natural to explore the use of linear logic as a basis for BDI-style agent systems.

In [13] it was shown how a notion of forward-chaining could be introduced into
the standard sequent calculus for linear logic in order to provide such behaviour.
In [14] the use of this framework as a basis for agent systems was discussed. In
this paper we develop this direction further by examining the language design
issues for such a system.

This paper is organised as follows: in §2 we give an overview of BDI sys-
tems, linear logic and linear logic programming, and in §3 we discuss the design
issues for an agent programming system based on linear logic. In §4 we focus
on scheduling issues and in §5 we discuss our conclusions and possibilities for
further work.

2 Background

2.1 BDI Agents

The BDI model (Belief Desire Intention) of Rao and Georgeff [28, 29] is a popular
model for intelligent agents which has its basis in philosophy [5] and offers a
logical theory which defines the mental attitudes of Belief, Desire, and Intention
using a modal logic; a system architecture; a number of implementations of this
architecture (e.g. PRS, JAM, dMars, JACK); and applications demonstrating
the viability of the model. The central concepts in the BDI model are [9, page
144]:

Beliefs: The agent’s information about the environment;
Desires: Objectives to be accomplished, possibly with each objective’s associ-

ated priority/payoff;
Intentions: The currently chosen course of action; and



Plans: Means of achieving certain future world states. Intuitively, plans are an
abstract specification of both the means for achieving certain desires and
the options available to the agent. Each plan has (i) a body describing the
primitive actions or sub-goals that have to be achieved for plan execution
to be successful; (ii) an invocation condition which specifies the triggering
event, and (iii) a context condition which specifies the situation in which the
plan is applicable.

The BDI model has developed over about 15 years and there are certainly
strong relationships between the theoretical work and implemented systems. The
paper [29] describes an abstract architecture which is instantiated in systems
such as dMars and JACK and shows how that is related to the BDI logic. How-
ever, the concepts that have been found to be useful for development within these
systems do not necessarily match the concepts most developed in the theoretical
work. Neither are they necessarily exactly the concepts which have arisen within
particular implemented systems such as JACK. An additional complication is
confusion and small differences between similar concepts, such as Desires and
Goals, which receive differing emphasis in different work at different times. Some
key differences between the philosophy, theory, and implementation viewpoints
of BDI are shown below.

Philosophy: Belief Desire Intention
Theory: Belief Goal Intention

Implementation: Relational DB (or arbitrary object) Event Running Plan

2.2 Linear Logic

Linear logic [10] is sometimes described as resource-sensitive, in that the notion
of resource is a natural one in this logic. The traditional techniques of logic treat
two copies of a formula as being equivalent to one copy (as mathematical truth is
not dependent on the number of times a property is stated), and hence formulae
can be arbitrarily copied. However, this does not fit well with some application
areas, in which there is a finite amount of resources, such as money, computer
memory, floor space or execution time. Resource-sensitive logics such as linear
logic do not allow arbitrary copying; in linear logic, by default, each formula has
to be used exactly once. This property means that linear logic is a natural way
to study state changes, and so provides a more direct way to model resource-
bounded applications than the traditional techniques. In particular, linear logic
has been applied to concurrency problems [10, 11], database updates [15] and
planning problems [22, 23].

Linear logic contains two forms of conjunction: one which is “cumulative”,
i.e. for which p⊗p 6≡ p, and one which is not, i.e. pNp ≡ p. Roughly speaking, the
former is what allows linear logic to deal with resource issues, whilst the latter
allows for these issues to be overlooked (or, more precisely, for an “internal”
choice to be made between the resources used), as, by default, each formula in
linear logic represents a resource which must be used exactly once.



Consider the following menu from a restaurant: fruit or seafood (in season),
main course, all the chips you can eat, and tea or coffee.

Note that the first choice, between fruit and seafood, is a classical disjunction;
we know that one or the other of these will be served, but we cannot predict
which one, which may be thought of as an “external” choice, in that someone
else makes the decision. On the other hand, the choice between tea and coffee
is an “internal” choice — the customer is free to choose which one shall be
served. Note the internal choice is a conjunction; in order to satisfy this, the
restauranteur has to be able to supply both tea and coffee, and not just one of
them. The chips course clearly involves a potentially infinite amount of resources,
in that there is no limit on the amount of chips that the customer may order. We
represent this situation by prefixing such formulae with a !. Note also that the
meal consists of four components, and hence we connect the components with
⊗. Hence we have the following representation of the menu:

(fruit ⊕ seafood) ⊗ main ⊗ ! chips ⊗ (tea N coffee)

where we write ⊕ for the classical disjunction. Note that the use of ! makes
it possible to recover classical reasoning, as formulae beginning with ! with ?
in a succedent behaves classically, in that such formulae may used arbitrarily
many times, including 0, rather than exactly once. Hence chips corresponds
to exactly one serving of chips, ! chips corresponds to an arbitrary number of
servings (including 0). In this way we may think of a formula !F in linear logic
as representing an unbounded resource, i.e. one that may be used as many times
as we like. Thus classical logic may be seen as a particular fragment of linear
logic, in that there is a class of linear formulae which precisely matches classical
formulae.

Linear logic also contains a negation, which behaves in a manner reminiscent
of classical negation. The negation of a formula F is written as F⊥. As there are
two conjunctions, there are two corresponding disjunctions, as well as a dual to
! denoted as ?. The following laws, reminiscent of the de Morgan laws, all hold:

(F1 ⊗ F2)⊥ ≡ (F1)⊥ O (F2)⊥ (F1 O F2)⊥ ≡ (F1)⊥ ⊗ (F2)⊥

(F1 ⊕ F2)⊥ ≡ (F1)⊥ N (F2)⊥ (F1 N F2)⊥ ≡ (F1)⊥ ⊕ (F2)⊥

Each of these four connectives also has a unit, which, for ⊗ and N are written
as 1 and >, and which may be thought of as generalisations of the boolean value
true, and for O and ⊕ are written as ⊥ and 0, and which may be thought of as
generalisations of the boolean value false.

There is far more to linear logic than can be discussed in this paper; for a
more complete introduction see the papers [2, 10, 11, 31], among others. A part
of the sequent calculus for linear logic is given in Appendix A.

2.3 Logic Programming in Linear Logic

The execution models on which these languages are based have generally been
based on backward-chaining, i.e. given a number of statements (or formulae)



which make up the program, the user then requests the system to determine
whether or not a given formula (the goal) follows from the information in the
program. The way that this is achieved is generally by working backwards, i.e.
establishing premises which, if true, would establish the truth of the goal. This
process is repeated until either an unconditional statement of truth is found (an
axiom), in which case the original goal succeeds, or no such premises can be
found, in which case the original goal fails. Hence backward-chaining consists of
starting with a given conclusion and working our way back (hopefully) to the
axioms.

Whilst this paradigm appears to be intuitive and natural for various appli-
cations, such as querying a database, or solving a particular set of constraints,
it does not allow programs to react to an environment, as they must wait for a
specific goal to be given. In applications such as a stock market monitor, it is
generally desirable to have the program “watch” the environment, which may
include large amounts of data, until a given set of circumstances is observed,
such as a sharp fall in the price of a blue-chip stock. Then it would be expected
to take the appropriate action, such as buying such stock, and selling it again
once the price has recovered. Thus the key element is for the program to evaluate
the current environment until certain trigger conditions are met.

Such reactive behaviour is more akin to forward-chaining, which is a method
of reasoning which begins with the axioms, and applies any known rules to
generate new results. In the context of linear logic, which is well-known to be a
useful way to model and reason about state changes, a forward-chaining approach
seems particularly suitable for reactive systems, as this provides a simple and
natural way to express conditions which are dependent on the dynamics of the
environment.

The techniques for backward-chaining (both classically and for linear logic)
are well-known [15, 20, 25, 27]; the integration of forward-chaining techniques into
such a system was investigated in [13]. In particular, this allows a combination
of don’t know nondeterminism (common in logic programming) via backward-
chaining with don’t care nondeterminism via forward-chaining.

Such an integrated system is thus able to both follow a planned sequence of
instructions (backward-chaining) and react to the environment and make appro-
priate changes (forward-chaining). In particular, this may be thought of as an
increased emphasis on process-oriented computation (such as the safe running
of a power plant or operating system) rather than result-oriented computation
(such as calculating a pay cheque or checking whether a given credit card number
is valid). As argued in [3, 32], amongst others, the process view of computation
is one that is becoming increasing important, and in which safety considerations
are vital.

Kowalski and Sadri [21] developed extensions to the traditional logic pro-
gramming paradigm to incorporate agent features. A key difference in our ap-
proach is the use of linear logic, which provides a better representation of dy-
namic information (such as actions and environmental changes) than classical
logic.



The key technical point is to determine the appropriate inference rules for
the forward-chaining part of the system. At first, this may seem rather trivial, in
that we simply take the well-known rule of modus ponens, and use it to determine
that B follows from A and A ⊃ B. However, there are some subtleties to this,
particularly for resource-sensitive logics.

In the classical case, the formulae A ∧ A ⊃ B and A ∧ B are equivalent,
which means that a forward-chaining system based on this rule has several strong
properties. One of these is monotonicity, in that the set of conclusions reached
can only increase. This property is exploited not only in the well-known TP
semantics for logic programs [7], but also by deductive database systems such as
Aditi, for which the monotonicity property is the underlying reason behind the
differential optimisation.

The corresponding analysis in linear logic is not as straightforward, though,
as the above equivalence does not hold. In particular, given p and p ( q, it is
possible to derive q, but p is “consumed” in this process. Hence the use of modus
ponens in linear logic is more like a committed choice, in that once the inference
rule is applied, p is no longer available, but q is, and so our analysis needs to
proceed in a more subtle way than in the classical case.

Our general procedure is to integrate elements of forward-chaining into the
standard sequent calculus for linear logic (which is given in an Appendix). The
sequent calculus is well-known as an inference system which permits an appropri-
ate analysis of backward-chaining, and whilst there are systems similarly suitable
for forward-chaining (such as natural deduction and Hilbert-type systems), it is
not clear how backward-chaining can be introduced into such systems.

It should be noted that backward-chaining techniques are generally applied
to a program and a goal: given a program P and a goal G, we proceed to search
for a proof of the sequent P ` G via some appropriate search strategy. Such
proofs are generally cut-free, in that the cut rule is not used in the search, as it
may introduce formulae with no known relationship to the original sequent, and
thus result in a hopelessly infeasible search.

By contrast, forward-chaining techniques are applied to a program, and pro-
duce another program. Hence, the natural approach is to define a relation  
between programs, so that P  P ′ denotes that P ′ can be derived from P (via
forward-chaining techniques).

We then need to determine not only the rules for  , but also how these
inference rules interact with the standard rules of the linear sequent calculus
(and hence with backward-chaining methods). Our approach is to model the
interaction between the two types of inference by a particular type of occurrence
of the cut rule, known as direct or analytic cuts. In particular, given a forward-
chaining inference P  P ′ and a backward-chaining one P ′′ ` G, then these two
inferences can synchronise when P ′ = P ′′. Thus we have that from P  P ′ and
P ′ ` G we can deduce P ` G, which is just an instance of the cut rule. The key
point to note is that not only are P and G known at the outset, but also that
we expect the inference rules for a conclusion such as P  P ′ to be such that



given P, we can readily derive P ′ from an appropriate number of applications
of the rule.

In this sense the rules for  are reminiscent of conditional rewriting rules,
or of Plotkin’s Structured Operational Semantics [26], in that given a unary rule
for  

P  P ′′

P  P ′
R

it will generally be the case that P is known but P ′ is not, and so we will use the
premise (and any appropriate sub-proofs) to evaluate P to P ′′, and then using
the rule R we will then determine that P  P ′.

Hence we proceed by inserting cuts into the inference rules of the linear se-
quent calculus, and study the properties of the resulting rules. We have some
preliminary results along these lines, which derive an appropriate set of inference
rules for and examines their integration into the linear sequent calculus. These
results were published in [13] and include permutation properties (which are fun-
damental to the issue of proof normalizations and hence proof-search strategies)
and cut-elimination results. Some of the rules for mixed-mode inference in linear
logic can be found in Appendix B. For the full set of rules (and additional details
relating to quantification) see [13].

3 Designing Agent Programming Systems

In [14] it was discussed how an agent system requires (at least) the properties
below:

1. A means of decomposing a given goal G into subgoals
2. A means of determining a set of possible plans to achieve the subgoals
3. A means of monitoring environmental changes and accordingly evaluating

the most appropriate plan to execute

We have discussed how backward and forward chaining can be integrated
within the one inference system. This section discusses how these two aspects of
the unified inference system can naturally model agents. In particular backward
chaining is used to model the proactive aspect of the agent (which involves finding
ways to achieve goals), and forward chaining is used to model the reactive aspect
of the agent (which involves integrating events/percepts). We also show below
how actions can be performed via forward chaining.

An agent can be represented by the sequent

E ,A,B, !P ` G

where B is the beliefs of the agent (which are linear since they change), P is the
program clauses (i.e. goal-plan decompositions), and G is the agent’s goals1. We
also allow events (E) and actions (A) to appear.
1 Actually since G includes executing plans it is closer to the intention structure



The following proof fragment illustrates the interaction of backwards chain-
ing over goals (proactive) with actions. Events are also handled using forward
chaining ( ). Adding an action (A) to the context triggers forward chaining
using a directed cut (labelled Cut ` below):

....
P, A P ′

....
P ′ ` G′, . . . , Gn

P, A ` G′, . . . , Gn
Cut `

P ` A( G′, . . . , Gn
( -R

....
P ` G1, . . . , Gn

where P includes both beliefs (linear) and program clauses (non-linear), which
may include action descriptions.

One issue concerns the choice of rules: the inference rules do not constrain
which rule is to be applied at any given point. However, in order for agents to
respond to events in a timely fashion, and in order for actions to be executed
when they are scheduled we would like to constrain the selection of rules. In
particular, whenever there are events or actions in the left side (antecedent) of
the sequent (i.e. ∆,do(A) ` Γ or ∆, event(E) ` Γ ) it seems reasonable to expect
that forward-chaining will be performed in preference to backward-chaining.
Hence as planning is implemented via backward-chaining, actions and events
tend to take precedence over planning computations.

To make things concrete, consider an “embedded” variety of the blocks world,
in which blocks can be moved around or added to the system without the agent
doing so (and hence the environment can alter the position and number of
blocks). There are red and blue blocks, and the agent’s goal is to finish with
a pile of blocks that has a red block on top and a blue block under it.

We use the following predicates in the rules below:

blue(X): block X is blue;
red(X): block X is red;
ontable(X): block X is sitting on the table;
on(X,Y): block X is on block Y;
clear(X): block X is clear, i.e. no block is on top of it;
empty: the robot arm is empty;
holds(X): block X is in the robot arm;
move: move a red block onto a blue one;
put(X,blue): put block X onto a blue block;

This leads to rules such as those below. We assume that red and blue are
classical (i.e. blocks do not change colour). We also assume that ⊗ binds tighter
than (, that ( binds tighter than ∀, and that ∀ binds tighter than !. Thus
!∀xp⊗ q( r ⊗ s is parsed as !(∀x((p⊗ q)( (r ⊗ s))).



! ∀x, y red(x) ⊗ blue(y) ⊗ clear(x) ⊗ on(x,y) ( redtop
! ∀x, y move⊥ ( red(x) ⊗ blue(y) ⊗ clear(x)

! ∀x, y move ⊗ on(x,y) ⊗ red(x) ⊗ red(y) ⊗ clear(x) ⊗ empty
( clear(y) ⊗ hold(x) ⊗ put(x,blue)

! ∀x, y move ⊗ ontable(x) ⊗ red(x) ⊗ clear(x) ⊗ empty ( hold(x) ⊗
put(x,blue)

! ∀x, y put(x,blue) ⊗ hold(x) ⊗ clear(y) ⊗ blue(y) ( on(x,y) ⊗ clear(x) ⊗
empty

Given these rules (which we denote R) and an initial state of the blocks, say
F , we then wish to determine whether R,F  R,F ′ such that redtop is true in
F ′, so that our goal is redtop ⊗>.

Clearly if for some blocks t and v we have {on(t, v), clear(t), !red(t), !blue(v)} ⊆
F , then no actions are taken. Otherwise, for example if we have the facts

!red(a), !red(b), on(a, b), ontable(b), clear(a), !blue(c), ontable(c), clear(c)

then the first two rules can be used in a backward-chaining manner to reduce
the goal to move⊥, which adds the fact move to the program. Forward-chaining
using the last two rules then takes place to get firstly the replacement of move
⊗ on(a,b) ⊗ clear(a) ⊗ empty by clear(b) ⊗ hold(a) ⊗ put(a,blue) and then to
replace hold(a) ⊗ put(a,blue) ⊗ clear(c) with clear(a) ⊗ on(a,c) ⊗ empty. As
there are no actions here, no further changes take place.

In the event that the blocks arrangement changes during computation, then
the pre-condition of the move action may fail (as a may no longer be on top
of b, or a may no longer be clear) or there may not be a clear blue block to
place the red one on. In such cases backtracking (including backtracking over
the unsuccessful action move) will lead to re-evaluation of the overall goal. Hence
when backtracking in the presence of actions, we may need to re-try goals which
in the standard logic programming paradigm would fail; this is simply a reflection
of the persistence of goals in a situated environment [34].

4 Scheduling Issues

It is one thing to derive a set of inference rules; it is another to design a program-
ming language based on them. In particular, we need to determine an appro-
priate computational interpretation of forward-chaining and its integration with
backward-chaining rules (whose operational behaviour is well understood). In
order to do so, we will make two simplifying assumptions, in order to illustrate
the principles involved.

The first assumption is based on the observation that the vast majority of
programs written in linear logic programming languages do not use linear rules
(e.g. [12, 15]). In other words, most applications of linear logic in logic program-
ming use rules which can be used any number of times (including 0) together
with a mixture of classical and linear facts (i.e. some of which can be used an
arbitrary number of times, and some of which must be used exactly once). For



example, a set of rules describing actions that may be taken together with the
current state of the world fits this scenario, such as the blocks world or a bin-
packing problem. Hence, as far as the forward-chaining aspect is concerned, we
can consider a program as a set of classical rules with a mixture of classical and
linear facts to be used as input.

Definition 1. Definite and goal formulæ are defined as follows:

Definite formulæ: D ::= A | 1 | D ⊗D | D ND | ∀x.D |!D | G( D
Goal formulæ: G ::= A | 1 | G⊗G | GNG | G⊕G | ∀x.G | ∃x.G |!G

A program is a multiset of closed definite formulae in which every occurrence of
( is within the scope of a !.

Thus we can consider a program to consist of two parts: a multiset of rules
R, which must be classical, and a multiset of facts F , which may contain either
linear or classical formulae.

The second assumption is also to do with the pragmatics of execution, and
in particular the extra choices available in the linear case when compared to the
classical one. Consider the program p, !(p ( q), !(p ( r). Here, as the fact p
can be applied to either (but only one of) the two rules, there is a choice to be
made as to whether this program should “evolve” to q, !(p( q), !(p( r) or to
r, !(p( q), !(p( r).

In the classical case, this choice does not have to be made, as due to the
ability to make arbitrary copies of formulae, we can duplicate p and hence apply
both rules in parallel. In the linear case, though, we cannot duplicate and hence
must make a choice.

In terms of inference rules, it is not difficult to show that we can derive
q N r, !(p( q), !(p( r) from this program, which essentially delays any choice
between q and r to a later point in the computation. However, this introduces
the possibility of having to keep track of a large number of possible branches,
and so, at least initially, it will be simpler to avoid this behaviour (which may be
thought of as an analogy of breadth-first search in the classical case), if possible.
One way to do this is to insist that the rules of the program be independent
(i.e. they operate on different parts of the facts). For example, given the facts
{p, q, r} the two rules !p( r and !q( r are independent, but the two rules ∆ =
{!(p ⊗ q)( r, !(p ⊗ r)( s} are not independent. If rules are not independent,
then we need to use N as above. For example, if ∆ denotes the two rules above,
then p, q, r,∆ (r ⊗ r)N (q ⊗ s),∆.

This property also makes it possible to think of the rules as independent,
in that two rules R1 and R2 are either not both applicable or they operate on
separate pieces of the program. Hence a program will consist of a number of facts
(linear or classical) together with a collection of independent rules R1, R2, . . . Rn
and a collection of inter-dependent rules R. The operational semantics of the
program will be determined by the way in which these rules are applied to
the facts. One reasonable heuristic is to apply the independent rules before the
inter-dependent ones, on the grounds that the changes made by the independent



rules may break some of the inter-dependencies. Otherwise, if all such inter-
dependencies remain, then the only possibility seems to be the use of N as
mentioned above.

This is a finer-grained notion than in the classical case. There, as facts may
be arbitrarily copied, all rules are independent, as it is possible to make as many
copies as is needed to satisfy each rule. Moreover, systems such as Aditi generally
compute “to the fixpoint”, i.e. the set of new facts accumulates until no more
can be generated. Hence we can think of this as the rules being fired in parallel
as many times as needed in order to generate the fixpoint.

We now define rule scheduling expressions that can be used to describe strate-
gies for applying rules. Given rules R1 and R2 we can apply the rules sequentially
(denoted by R1R2) or in parallel (denoted by R1 ∪R2). Also, given a rule R we
can apply it until it can no longer be applied or a fixpoint is reached (denoted
R∗). Note that this notation is similar to regular expressions.

Using this notation we can describe the scheduling applied by systems such
as Aditi with the expression (R1∪R2∪ . . .∪Rn)∗, in that a (ground) fact A will
be generated by this process if there is some sequence of application of the rules
R1, . . . Rn to the facts which results in A.

In the linear case, we do not necessary want to compute fixpoints; in particu-
lar, unlike the classical case, fixpoints do not always exist. For example, consider
the program p, !(p ( q), !(q ( p). These rules are independent, but repeated
application of the rules will see the program oscillate between the above and
q, !(p ( q), !(q ( p). Thus we require that forward-chaining terminates not at
fixpoints, but when a given goal G is satisfied.

Now for independent rules R1 and R2, it is clear that (R1 ∪ R2)(F ) =
(R1R2)(F ) = (R2R1)(F ), and hence we can choose to execute such rules ei-
ther in parallel (R1 ∪R2) or in a particular sequence. However, we do not know
in advance whether or not an application of R1 or R2 alone will suffice to prove
the overall goal. Furthermore, as a given rule, say R1 may be applicable to a
number of facts in the program, we also need to consider whether we should
check for termination after each application of R1, or after all applications of
R1.

Hence we need to make two strategic decisions: whether to pursue the inde-
pendent rules parallel or in some sequence; and whether to pursue the application
of each independent rule in parallel or in sequence on all appropriate facts.

In the absence of any other information, a reasonable default would be to
do both in sequence, in order to maximise the ability to flexibly react to en-
vironmental changes. Hence if each independent rule Ri can be applied ni
times to the facts, this is just the sequence of rule applications of the form
(R1)n1(R2)n2 . . . (Rm)nm which is essentially a depth-first application of the rule
instances.

A sequence of similar granularity is (R1R2 . . . Rn)k where k = max(n1, n2, . . . nm),
which is a breadth-first application of the rule instances.



5 Conclusions and Further Work

This paper has discussed various implementation issues for a framework for
agents based on mixed mode computation in linear logic. In a sense, this is the
first tentative step of the ambitious programme outlined in [14]. In particular,
in the integration of the forward- and backward-chaining techniques it seems
reasonable to give preference to forward-chaining (i.e. actions and reactions to
environmental changes) over backward-chaining. However, this will require some
counterintuitive features, such as backtracking over actions and re-trying goals
which have already failed. However, both seem reasonable in the context of a
dynamic environment.

One clear issue that is raised by the independence property of rules is that
the use of aggregate constructs (such as Negation as Failure, or findall) will be
crucial to the development of applications. A linear rule such as A( B may be
thought of as having an implicit existential quantifier: “if there is a resource A,
then change it to B”. A complementary rule would then be of the form “if there
is no such resource, then ...”. A logical method of specifying such rules is clearly
of fundamental importance.
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A Sequent Calculus for Linear Logic (excerpt)

φ ` φ axiom
Γ ` φ,∆ Γ ′, φ ` ∆′

Γ, Γ ′ ` ∆,∆′
cut

Γ, φ[t/x] ` ∆
Γ,∀x . φ ` ∆ ∀-L

Γ, φ ` ψ,∆
Γ ` φ( ψ,∆

( -R

Γ, φ, ψ ` ∆
Γ, φ⊗ ψ ` ∆ ⊗-L

Γ ` φ,∆ Γ ′ ` ψ,∆′

Γ, Γ ′ ` φ⊗ ψ,∆,∆′
⊗-R

Γ ` φ,∆ Γ ′, ψ ` ∆′

Γ, Γ ′, φ( ψ ` ∆,∆′ ( -L

Γ, φ ` ∆
Γ, !φ ` ∆ !-L

!Γ ` φ, ?∆
!Γ `!φ, ?∆

!-R
Γ ` ∆
Γ, !φ ` ∆ W !-L

Γ, !φ, !φ ` ∆
Γ, !φ ` ∆ C!-L

where y is not free in Γ , ∆.

B Mixed-mode Inference Rules from [13] (excerpt)

P  P Axiom 
A ` A Axiom `

P  P ′

P, !D  P ′ W  

P  P ′′ P ′′  P ′

P  P ′ Cut 
P  P ′ ♦P ′ ` G

P ` G Cut `

P, D1, D2  P ′

P, D1 ⊗D2  P ′
⊗ 

P, D  P ′

P, !D  P ′ ! 
P, D[t/x] P ′

P,∀xD  P ′ ∀ 

P, !D, !D  P ′

P, !D  P ′ C  
P1  P ′ ♦P ′ ` G
P1,P2, G( D  P2, D

( 
!P  P ′

!P  !♦P ′ !M

We define ♦P as
n⋃
i=1

∀(⊗Pi). We define ♠P as
n⊗
i=1

∀(⊗Pi).


