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Abstract

A key property in the definition of logic programming languages is the completeness of goal-
directed proofs. This concept originated in the study of logic programming languages for in-
tuitionistic logic in the (single-conclusioned) sequent calculus LJ, but has subsequently been
adapted to multiple-conclusioned systems such as those for linear logic. Given these devel-
opments, it seems interesting to investigate the notion of goal-directed proofs for a multiple-
conclusioned sequent calculus for intuitionistic logic, in that this is a logic for which there are both
single-conclusioned and multiple-conclusioned systems (although the latter are less well known
than the former). In this paper we show that the language obtained for the multiple-conclusioned
system differs from that for the single-conclusioned case, and discuss the consequences of this
result.

Keywords: Multiple-conclusioned intuitionistic logic, goal-directed proofs, logic programming
languages, hereditary Harrop formulae, proof search.

1 Introduction

Logic programming is based upon the observation that if certain restrictions are placed on the class
of formulae that can be used, then statements of mathematical logic can be interpreted as computer
programs. In particular, computation consists of a search for a proof of a given goal from a given
program, and the restrictions placed on the formulae ensure that this proof search is sufficiently deter-
ministic. The best known such restriction is to allow programs to consist ofHorn clausesand goals
to consist of existentially quantified conjunctions of atoms [12], which form the basis of the language
Prolog [23].

Whilst such languages have been used in a wide number of applications [22], it is not imme-
diately clear why any restriction on the class of formulae is necessary; in particular, what is it that
distinguishes a logic programming language from a theorem prover? Whilst a general answer to
this question remains elusive, there have been various logic programming languages based on other
classes of formulae than Horn clauses, and indeed on logics other than classical logic. These include
extensions to Horn clauses such as allowing implications, universal quantifiers, and negations in the
bodies of clauses [3, 15], the incorporation of higher-order facilities [15], and negations and disjunc-
tions in the heads of clauses [16], as well as languages based on on linear logic (including Lygon[9],
Forum[14], LinLog [1], LO [2], Lolli [10], ACL [11], andLC [25]).
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Many of these languages are based on the notion of agoal-directed proof[15], which, roughly
speaking, requires that the goal be decomposed before the program, and hence the computation uses
the program as a context, but the goal as the controlling sequence of instructions. This idea was first
presented in the context of intuitionistic logic, and has in many of the above cases been generalised to
multiple-conclusioned logics such as classical logic and linear logic (although, it must be said, there
appear to be at least two distinct such generalisations). However, in its original form [15], the notion
of a goal-directed proof is derived directly from Gentzen’s sequent calculus for intuitionistic logic
known as LJ. This calculus may be seen as a special case of the calculus LK for classical logic, in that
LJ is obtained from LK by restricting the succedents to contain at most one formula (thus LJ is often
referred to assingle-conclusioned). This property is then exploited in the notion of a goal-directed
proof by requiring that the outermost connective of the formula in the succedent (if any) is to be
reduced before any of the connectives which appear in the antecedent. This approach is not without
its problems, as discussed in [27], but to date it has been the most successful approach to identifying
logic programming languages in single-conclusioned systems. In particular, this notion of proof has
lead to the study of the class of formulae known ashereditary Harrop formulae, which may be used
as the basis of both first-order and higher-order logic programming languages [15]. There is some
evidence that this class of formulae is, in some sense, maximal [7] (at least for the first-order case).

Thus it would seem that the identification of logic programming languages in intuitionistic logic
is a solved problem. However, it is less widely known that there are multiple-conclusioned sequent
calculi for intuitionistic logic [26]. Whilst these are not as well known as LJ, they have been of
some interest for the relationship between intuitionistic and classical inference [20, 21]. Given such
inference systems, the question naturally arises as to what logic programming languages would look
like in such systems, and what the results of the previous analysis would be. This is a particularly
interesting question given that there has been a significant amount of investigation of notions of goal-
directed provability for multiple-conclusioned systems such as linear logic [1, 10, 19] and classical
logic [8, 17, 18]. Thus it seems appropriate to investigate the design of logic programming languages
via goal-directed provability for a multiple-conclusioned sequent calculus for intuitionistic logic.

In this paper we investigate such a sequent calculus from the point of view of goal-directed proofs.
In particular, we investigate the completeness properties of this class of proofs, which are fundamental
to the identification of logic programming languages. We then compare our results to those obtained
in the single-conclusioned case.

2 Preliminaries

2.1 Sequent Calculi

Sequent calculi are due originally to Gentzen [5] and are often used in the analysis of proof systems.
A sequent� ` � may be thought of as stating that ifall the formulae in� are true, thenat least one
of the formulae in� is true.� is referred to as theantecedentand� as thesuccedent.

The sequent calculus for classical logic, LK, is the best known (and arguably the simplest). The
rules for this calculus are given below.

F ` F
Axiom

� ` F;� �; F ` �

� ` �
Cut

� ` �
�; F ` �

WL
� ` �

� ` F;�
WR
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�; F; F ` �

�; F ` �
CL

� ` F; F;�

� ` F;�
CR

�; F1; F2;�
0 ` �

�; F2; F1;�
0 ` �

IL
� ` �; F1; F2;�

0

� ` �; F2; F1;�
0
IR

�; F1; F2 ` �

�; F1 ^ F2 ` �
^L

� ` F1;� � ` F2;�

� ` F1 ^ F2;�
^R

�; F1 ` � �; F2 ` �

�; F1 _ F2 ` �
_L

� ` F1; F2;�

� ` F1 _ F2;�
_R

� ` F1;� �; F2 ` �

�; F1 ! F2 ` �
! L

�; F1 ` F2;�

� ` F1 ! F2;�
! R

� ` F;�

�;:F ` �
:L

�; F ` �

� ` :F;�
:R

�; F [t=x] ` �

�;8xF ` �
8L

� ` F [y=x];�

� ` 8xF;�
8R

�; F [y=x] ` �

�;9xF ` �
9L

� ` F [t=x];�

� ` 9xF;�
9R

The rules9L and8R have the usual side condition thaty is not free in�, � or F .
LK has the cut-elimination property [5], i.e. that any proof containing occurrences of the Cut rule

can be replaced with a (potentially much larger) proof in which there are no occurrences of the Cut
rule.

It is well known that the sequent calculus contains redundancies, in that there may be several triv-
ially different proofs of the same sequent. In particular, the order of the rules can often be permuted,
in that given a sequence of inference rules, we can change the order of the rules to obtain an equivalent
sequence (i.e. one which has the same root and leaves as the original).

In order to study such properties, we require some further terminology [4]. Theactive formulae
of an inference are the formulae which are present in the premise(s), but not in the conclusion. The
principal formula of an inference is the formula which is present in the conclusion, but not in the
premise(s). Intuitively, the inference converts the active formulae into the principal formula (but as
discussed in [13], this is sometimes too simplistic).

When looking to permute the order of two inferences, it is necessary to check that the principal
formula of the upper inference is not an active formula of the lower one; otherwise, no permutation is
possible. When this property occurs, the two inferences are said to be inpermutation position[4, 13].

For example, consider the two inferences below.

q ` p; q; r

q ` p; q _ r
_R

:p; q ` q _ r
:L

:p ^ q ` q _ r
^L

q ` p; q; r

:p; q ` q; r
:L

:p; q ` q _ r
_R

:p ^ q ` q _ r
^L

In either inference, we have the following:

Rule Principal Formula Active Formulae
^L :p ^ q :p, q
:L :p p

_R q _ r q; r

Note that in the left-hand inference, as:p is both the principal formula of:L and an active
formula of^L, :L and^L are not in permutation position. On the other hand, as the active formula
of :L is p, this is distinct from the principal formula of_R, which isq _ r, and hence:L and_R are
in permutation position. In particular, we can permute_R below:L (or alternatively:L above_R)
resulting in the right-hand inference above.
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2.2 Intuitionistic Logic and LJ

The standard sequent calculus for intuitionistic logic, LJ, can be obtained from LK by requiring that
in every sequent� ` � the succedent� contains at most one formula. This has the effect of dropping
the rules CR and IR, and restricts the WR rule to the case in which the succedent of the premise must
be empty. Similar remarks apply to the:L and:R rules. The only other rules with any changes of
significance are the!L and_R rules, which have the following form in LJ:

� ` F1 �; F2 ` �

�; F1 ! F2 ` �
! L

� ` Fi

� ` F1 _ F2

_R

The!L rule thus omits the duplication of� in the left-hand premise.
The_R rule must choose which ofF1 andF2 is to appear in the premise. In fact, in the presence

of the WR and CR rules, this rule is equivalent to the one given for LK above. As we shall see, this is
a crucial difference between LJ and the multiple-conclusioned version.

LJ also has the cut-elimination property [5].

2.3 Multiple-Conclusioned Systems for Intuitionistic Logic

Below is the multiple-conclusioned system taken from [26].

F ` F
Axiom

� ` �
�; F ` �

WL
� ` �
� ` F;�

WR

�; F; F ` �

�; F ` �
CL

� ` F; F;�

� ` F;�
CR

�; F1; F2;�
0 ` �

�; F2; F1;�
0 ` �

IL
� ` �; F1; F2;�

0

� ` �; F2; F1;�
0
IR

�; F1; F2 ` �

�; F1 ^ F2 ` �
^L

� ` F1;� � ` F2;�

� ` F1 ^ F2;�
^R

�; F1 ` � �; F2 ` �

�; F1 _ F2 ` �
_L

� ` F1; F2;�

� ` F1 _ F2;�
_R

�; F [y=x] ` �

�;9xF ` �
9L

� ` F [t=x];�

� ` 9xF;�
9R

�; F [t=x] ` �

�;8xF ` �
8L

� ` F [y=x]

� ` 8xF;�
8R

� ` F1;� �; F2 ` �

�; F1 ! F2 ` �
! L

�; F1 ` F2

� ` F1 ! F2;�
! R

� ` F;�

�;:F ` �
:L

�; F `

� ` :F;�
:R

The rules9L and8R have the usual side condition thaty is not free in�, � or F .
Following [20, 21], we refer to this system as LM. Unlike LJ, contraction on the right may be used

arbitrarily here. Note also that this is effectively negated in some instances by the form of the rules
for 8R,!R and:R.

Note also that the_R rule is classical (ie the LK rule), and the rules8R,!R and:R are different
from both LK and LJ. Following Wallen [26], let us call these latter rulesspecialrules.

As an illustration of the differences between LK, LJ and LM, consider Pierce’s formula((p !
q) ! p) ! p, which is provable classically, but not intuitionistically. The LK proof is below, as are
the corresponding failed attempts in LJ and LM respectively (in left to right order).
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p ` q; p
Ax

` p! q; p
! R

p ` p
Ax

(p! q)! p ` p
! L

` ((p! q)! p)! p
! R

X
p ` q

` p! q
! R

p ` p
Ax

(p! q)! p ` p
! L

` ((p! q)! p)! p
! R

X
p ` q

` p! q; p
! R

p ` p
Ax

(p! q)! p ` p
! L

` ((p! q)! p)! p
! R

Note that in LK, the!L rule does not make a choice betweenp ! q andp, whereas in LJ it
choosesp. In LM, the!L does not make a choice betweenp! q andp, but the!R rule does.

3 Goal-Directed Proofs

The logic programming interpretation of a sequent� ` � is that the antecedent� represents the
program, and the succedent� the goal. Hence when searching for a proof of� ` � (i.e. performing
computation), the search should be “driven” by� (and thus be goal-directed). The proof-theoretic
characterisation of this property is the notion ofuniform proof.

Definition 1 An LJ proof isuniform if for every sequent� ` � in which� is a non-atomic formula,
the inference rule used to derive� ` � is the right rule for the principal connective of�.

Thus the search process must reduce a non-atomic succedent before it looks at the program. We
also need a proof-theoretic account of resolution, which is given by the notion of asimple proof[15].

Definition 2 An LJ proof issimpleif for every occurrence of!L the right hand premise is an axiom.

Clearly it is possible for an LJ proof to be neither uniform nor simple. Hence the question is to
identify a class of formulae for which simple uniform proofs are complete (i.e. do not “miss” any
consequences).

The fragment known ashereditary Harrop formulaehas these properties and is defined as follows:
LetA range over atomic formulae.

Definite formulae D ::= A j D ^D j G! A j 8x :D

Goal formulae G ::= A j G _G j G ^G j D ! G j 8x :G j 9x :G

A program, then, is a set of definite formulae, and a goal is a goal formula. We then have the
following theorem.

Theorem 1 (Miller et. al [15]) LetP ` G be a hereditary Harrop sequent. ThenP `I G iff P ` G
has a simple uniform proof in LJ.

4 LP Languages in LM

We now turn to the problem of identifying logic programming languages in LM. Following the above
pattern, we need to find an appropriate conception of goal-directed proof in LM. Having done so, a
class of formulae is then a logic programming language if for anyP andG in the appropriate class,
P ` G is provable iffP ` G has a goal-directed proof. We can establish such a result by considering
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permutabilitiesof rules and showing that a given proof ofP ` G can always be transformed using
permutabilities into a goal-directed proof.

Now clearly the only rules in LM which differ from LK are8R, !R and:R, and hence these
are the only ones whose permutation behaviour will differ from LK. Note that we are particularly
interested in permuting right rules downwards (i.e. towards the root of the proof). The following table
summarises when we can permute a right rule above a left to a left above a right.

8R :R !R 9R ^R _R

_L no no no yes yes yes
!L (right) no no no yes yes yes
!L (left) can be eliminated usingW yes yes yes
^L yes yes yes yes yes yes
8L yes yes yes yes yes yes
9L yes yes yes no yes yes
:L yes yes yes yes yes yes

Note that we distinguish between the right rule appearing in permutation position above the left
premise of!L and above the right premise. We do not do this for_L as the two are symmetric. For
the!L (left) case, note the following transformation:

....
�; F3 ` F4

� ` F1; F3 ! F4;�
! R

....
�; F2 ` F3 ! F4;�

�; F1 ! F2 ` F3 ! F4;�
! L =)

....

....
�; F3 ` F4

� ` F3 ! F4;�
! R

�; F1 ! F2 ` F3 ! F4;�
WL

....

A point to note is that in LM, the_R rule can be permuted below the_L rule, which is not the
case in LJ (but is the case in LK). As a result, it is possible to use disjunctions positively in programs
in LM. This gives a proof-theoretic characterisation of the notion ofdisjunctive logic programs[16],
which have been used to model certain types of uncertain information. This may be thought of as a
particular instance of the general observation that there is a trade-off between the expressivity of the
language and the strength of the properties of the search strategy. In this case, no choice has to be
made when the_R rule is applied, and hence a larger fragment of the logic may be used;quid pro
quo, the resulting proofs no longer have the disjunctive property (i.e. that ifF1 _ F2 is provable, then
so isFi for somei = 1; 2). Note, though, that the9R rule cannot be permuted below the9L rule (just
as in LK), and hence there is no corresponding property for9.

Hence the main observation is that the special rules do not permute downwards past_L or !L
on the right. Below is a proof in which!R occurs above the right premise of!L, but cannot be
permuted downwards.

p ` p; q ! r; q q ` p; q ! r; q

p _ q ` p; q ! r; q
_L

p _ q; q; r ` r

p _ q; r ` q ! r; q
! R

p _ q; p! r ` q ! r; q
! L

Attempting to prove this sequent with!R results in an unprovable premise, as below.
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X
p _ q; q ` p; r p _ q; r; q ` r

Ax

p _ q; p! r; q ` r
! L

p _ q; p! r ` q ! r; q
! R

Hence, in order for a class of formulae to be a logic programming language, we need to ensure
that the “no” cases in the above table cannot occur.

We have two orthogonal choices:

1. 9L versus9R

2. The special rules (8R,:R and!R) versus_L and!L.

Note that the rules8L, ^L, :L, _R and^R can be freely used. This yields the following four
combinations:

1. Right rules:̂ ;_;8;:;!, Left rules:8;^;:;9.

2. Right rules:̂ ;_;8;:;!;9, Left rules:8;^;:.

3. Right rules:̂ ;_, Left rules:8;9;^;_;:;!

4. Right rules:̂ ;_;9, Left rules:8;^;_;:;!

The first two possibilities don’t appear to be very useful since they do not allow implication on
the left and thus don’t even allow Horn clauses.

Of the remaining two possibilities, the latter is more promising, as the former does not include
existential quantifiers in goals, and hence also does not generalise Horn clauses. Hence the most useful
language is the last one, which, when compared to hereditary Harrop formulae allows disjunctions and
negations on the left, but disallows universal quantifiers and implications on the right.

One question that quickly arises in any discussion of goal-directedness in a multiple-conclusioned
setting is that there is now a choice to be made between applicable right rules (whereas in the single-
conclusioned case there is only one). Clearly there are only two possibilities: either the choice is
arbitrary (and hence any choice will suffice) or it is not (and so more care must be taken to maintain
completeness). The former is what is assumed in Forum, and hence all right rules must permute over
each other. The latter is what is assumed in Lygon, and hence the possible execution strategies must be
derived from an analysis of the permutation properties of the right rules, which in the case of Lygon,
is based around Andreoli’s analysis of such rules [1].

The following table summarises permutability properties among the right rules. Ayesindicates
that the right rule of the column can be permuted below the right rule of the row. Ano indicates
that this is not possible and aN/A indicates that it is not possible for the pair of rules to occur in
permutation position. Ano? indicates that although a normal permutation is not possible a sub-proof
with the same premises and conclusion is possible which only applies the special rule. For example
consider the transformation below:

....
�; G ` H

� ` F1; F2; G! H
! R

� ` F1 _ F2; G! H
_R =)

....

....
�; G ` H

� ` F1 _ F2; G! H
! R

....
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8-R :-R !-R 9-R ^-R _-R

8-R N/A N/A N/A N/A N/A N/A
:-R N/A N/A N/A N/A N/A N/A
!-R N/A N/A N/A N/A N/A N/A
9-R no? no? no? yes yes yes
^-R no? no? no? yes yes yes
_-R no? no? no? yes yes yes

Hence we arrive at the following notion of goal-directness and class of formulae.

Definition 3 An LM proof isuniform if every sequent which contains a non-atomic formula in the
succedent is the conclusion of a right rule.

Definition 4 LM-definite formulae and LM-goal formulae are given by the grammar:

LM-definite formulae D ::= A j D ^D j D _D j :D j G! D j 8x :D

LM-goal formulae G ::= A j G _G j G ^G j 9x :G

It is then straightforward to show the following result.

Proposition 1 Let P be a set of LM-definite formulae andG be a set of LM-goal formulae. Then
P ` G has an LM-proof iffP ` G has a uniform proof.

As for simple proofs, we need to restrict the formulae in the programs to beclausal, i.e. of the
form G ! A rather thanG ! D. This is done so that when permuting other left rules down below
!L on the right, we can be sure that the two rules are always in permutation position (as an atom can
never be the principal formula). Hence we arrive at the following definition.

Definition 5 Clausal LM-definite formulae are given by the grammar:

Clausal LM-definite formulaeD ::= A j D ^D j D _D j :D j G! A j 8x :D

Then it is straightforward to show the following result from the permutation properties by a simple
inductive argument.

Proposition 2 LetP be a set of clausal LM-definite formulae andG be a set of LM-goal formulae.
ThenP ` G has an LM-proof iffP ` G has a simple uniform proof.

In the LJ case, there is no increase in power by allowing clauses of the formG ! D, due to the
following intuitionistic equivalences:

G! (D1 ^D2) � (G! D1) ^ (G! D2)
G! (G0 ! D) � (G ^G0)! D

G! (8xD) � 8x(G! D) wherex is not free inG.

In the LM case, this is no longer true, due to the presence of clauses of the formD1 _ D2, and
thatG ! (D1 _ D2) is not intuitionistically equivalent to(G ! D1) _ (G ! D2). However, it
should be noted that this equivalence does hold in a slightly stronger logic, in which this is one of
theIndependence of Premiserules. Further discussion on this point is beyond the scope of this paper;
interested readers are referred to [6, 24].
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5 Conclusions and Further Work

We have seen that the permutation properties of LM mean that the straightforward application of the
notion of goal-directed proof from the single-conclusioned case results in a different class of formulae
than hereditary Harrop formulae. This suggests that a further and more subtle analysis is needed. The
language discussed here is basically a version of Horn clauses which may contain negations and
disjunctions. Hence this class of formulae (and proofs in LM) may be useful for investigations of
programs which may contain such connectives, but it is not at all clear what, if any, relationship it has
to hereditary Harrop formulae.

Another topic of interest is the relationship between search in LM and search in LJ. In particular,
the search properties of LM may be thought of as allowing “delayed” choices when compared with
LJ, particularly for the_R and!L rules as mentioned above. This means that an attempt at a proof in
LM may correspond to more than one such attempt in LJ; a correspondence of this sort seems worthy
of further investigation.

Another relevant direction is the slightly stronger logic in which the Independence of Premise rules
hold. As we have seen, this is relevant to issues of clausal decomposition, as well as to operational
equivalences of programs [6]. An investigation of the proof theory of such a logic and its relation to
LM would be particularly interesting.
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