
A deployed multi agent system for meteorological alerts

Sandy Dance and Malcolm Gorman
Bureau of Meteorology

Melbourne, AUSTRALIA� s.dance,m.gorman � @bom.gov.au

Lin Padgham and Michael Winikoff
RMIT University

Melbourne, AUSTRALIA� linpa,winikoff � @cs.rmit.edu.au

ABSTRACT
The Australian Bureau of Meteorology has a requirement for com-
plex and evolving systems to manage its weather forecasting, mon-
itoring and alerts. This paper describes a system that monitors in
real time the current terminal area forecasts (forecasts for areas
around airports) and alerts forecasters to inconsistencies between
these and observations obtained from automatic weather station
(AWS) data. The contributions of the paper are a description of the
overall architecture including legacy components, and the mech-
anisms that have been used to interface to legacy components; a
description of an inferencing mechanism, available in recent ver-
sions of the JACK Intelligent Agents toolkit which has been partic-
ularly useful in some of the reasoning needed in this application;
and a detailed description of the architecture for data sharing and
data management. The system is currently deployed and a project
is underway to extend this to a much larger system.

1. INTRODUCTION
The Australian Bureau of Meteorology1 head-quartered in Mel-
bourne is the national weather service of Australia. It has a strong
need for complex and evolving systems for managing its weather
forecasting, monitoring and alerts and it is currently in the process
of developing a sophisticated software system in which intelligent
agents play a significant role.

There are a number of challenges to be met in developing this sys-
tem:

� The system must evolve over time. It must include legacy
software, and must include and make use of new and more
sophisticated components as these are made available.

� It must be a distributed system and open system. Compo-
nents must be able to run on different platforms, and must be
able to be developed and deployed by different groups with
only loose co-operation. As new components are added they
must be located and used appropriately.

�
http://www.bom.gov.au

Agents at Work: Deployed Applications of Autonomous Agents and Multi-
agent Systems, AAMAS’03 July 14-18, 2003, Melbourne, Australia.

� The system must handle large amounts of data, used and pro-
duced by many agents and by legacy software.

� The system involves a range of complex goals, a highly dy-
namic environment and some complex inferencing.

This paper describes a pilot project which is the initial stage of this
large and complex system. The contributions of this paper are a de-
scription of the overall architecture including legacy components,
and the mechanisms that have been used to interface to legacy com-
ponents; a description of an inferencing mechanism, available in
recent versions of the JACK Intelligent Agents toolkit which has
been particularly useful in some of the reasoning needed in this
application; and a detailed description of the architecture for data
sharing and data management. The pilot system has currently been
deployed in the Bureau and a long term project has been approved
and funded.

The Forecast Streamlining and Enhancement Project (FSEP) is a
major project within the Australian Bureau of Meteorology which
seeks to improve the quality, quantity, consistency and timeliness of
weather products and services to the community and major clients
such as the aviation industry, fire fighters and emergency services.
Increasingly clients require real-time alerting of significant weather
events. To improve the timeliness of weather alerts to clients, and
to help streamline the work-flow of forecasters, intelligent alerting
within the forecast system has a high priority in FSEP.

The domain is highly dynamic, with large amounts of data about a
(sometimes) rapidly changing environment. There are also a wide
range of goals that must be addressed by the system, such as detect-
ing particular meteorological phenomenon, resolving inconsisten-
cies in information, providing appropriate focused information to
users, watching closely particular geographical areas (e.g. around
airports), etc. This combination of a range of complex goals and a
highly dynamic environment, makes a system incorporating intel-
ligent agents, which can be both reactive and proactive, a natural
choice.

The organization of this paper is as follows: in the first section
we describe the overall requirements of the system, including that
of the user interface. In section 3 we describe the overall architec-
ture and address in particular the legacy components that were used
and the generic tools that we used to interface with these. Section
4 provides a detailed description of the data sharing and manage-
ment layer which is critical to the overall design and to the ability
of the system to continue to evolve over time. Section 5 describes
briefly the JACK Intelligent agents toolkit, and in particular intro-
duces an inferencing feature not usually found in BDI (Belief, De-



TAF YMML 122218Z 0024
24006KT 9999 FEW025 BKN030
FM02 18015KT 9999 SCT040
FM17 25006KT 9999 BKN025
T 15 19 20 16 Q 1028 1026 1025 1026

Figure 1: An example of a TAF, a forecast of weather around
an airport, encoding among other data the future temperature
and pressure changes on the last line.

sire, Intention) agent systems, which is useful in doing some of the
complex reasoning required by this system. Section 6 contains a
brief description of alerting agent behaviour. Finally we conclude
with information on deployment of the system and plans for future
work.

2. APPLICATION DESCRIPTION
There is a particular requirement for improved aviation forecasts,
and an important component is the rapid amendment of forecasts as
soon as the need for amendment is indicated. This may be achieved
by continual comparison of weather conditions against forecasts,
which would be labour intensive if done by humans. An automated
alerting system can perform a continuous weather watch and ensure
forecasters will be alerted to significant weather developments in
real time so that amendments may be quickly issued. Less severe
weather changes will also be alerted by the system. The quality and
timeliness of current aviation forecasts will thus be continuously
monitored and corrected.

The pilot system which is the focus of this paper monitors in real
time the current terminal area forecasts (TAF, highly abbreviated
forecasts of weather around airports intended for pilots, Fig 1) look-
ing for inconsistencies between them and current airport observa-
tions as provided by automatic weather station (AWS, Fig 2) data
available within the Bureau. When an inconsistency is found, the
system issues an alert to the forecaster. Such an alert has the po-
tential to cause forecasters to change the TAFs issued in the future,
thus leading to removal or lessening of the inconsistency. Input to
this system is the TAFs and AWS data obtained from the Bureau’s
current real-time communications system. The network of agents
compares these data streams and analyzes them for various scenar-
ios: for instance, inconsistency, TAF not issued, TAF expired and
TAF unrealistic. The agent system reasons about such things as

� whether this alert has previously been issued,

� how important the alert is,

� whether the alerts are being responded to,

� which forecasters to direct the alert to.

The system is an end-to-end demonstration of all the architectural
capabilities required (subscriptions, data routing, communication
with data sources, self-describing data, and simple service descrip-
tions and service location mechanisms). While the scope is rela-
tively small, the system provides a basic structure that can be used
and refined for building the larger system.

The Australian Integrated Forecast System (AIFS) [1] is the hard-
ware and software platform on which FSEP is being implemented.

Figure 2: Typical automatic weather station (AWS).

Forecasts are prepared and stored numerically to allow ready com-
parison with weather observations and forecast guidance. Guid-
ance includes numerical weather model predictions that forecasters
use to help guide their forecasting, as well as alerts to direct their
attention to particular issues, such as inconsistencies or predicted
weather patterns of concern.

2.1 Requirements for the System
2.1.1 User Interface

The Intelligent Alerts user interface is intended to reduce forecaster
time and effort, so it is important to ensure that alerts are not ex-
cessive or intrusive. The user interface should be user friendly and
intuitive with personal default settings, alert categories, alert prior-
ities, manual and automated threshold setting, and easy access to
alert details.

2.1.2 Graphic Alerts
Some alerts will be presented graphically, such as an overlay of the
current (numerical) forecast with the model forecast (guidance) cal-
culated. An unobtrusive arrival alert indicates to forecasters when a
new model has been calculated, while a single discrepancy alert ad-
vises of all significant discrepancies between the forecast produced
by the forecasters and that suggested by the system. The forecaster
can then look at the graphical representation of the forecast, the
guidance and the discrepancies between them.

2.1.3 Verification
Verification alerts provide post hoc feedback to forecasters. Af-
ter the forecast period has elapsed and sufficient observational data
has arrived, the accuracy of the forecast can be assessed. A systems
approach to verification, providing immediate alerts to forecasters



BurstTracks

CoreDetector

Display

MBDetector

ShearDetector

radar

meteorological
context

ReadData

Figure 3: The network of agents used for microburst detection.

while the forecast is fresh in memory, provides the basis for con-
tinual improvement and higher forecaster satisfaction.

2.1.4 External Customers
Intelligent alerts can provide the opportunity to automate the no-
tification to external customers of significant weather changes via
email, event messaging, telephone, pager or PDA. The demand on
forecasters and ancillary staff to respond to telephone queries at
the height of a severe weather situation may thus be reduced, while
providing a more timely and consistent real time alerting service to
important clients.

2.1.5 An existing microburst agent system
An existing agent-based microburst detecting system [2] will be in-
tegrated into the alerting system described here. Microbursts are
regions of high-shear and strong down-drafts associated with thun-
derstorms that are a hazard for aircraft, and can be detected with
real-time weather radar. In the microburst system, the detection
problem is broken down into a number of steps, each undertaken
by its own agent. One agent seeks areas of high wind-shear in low-
level radar sweeps, either autonomously, or as a result of inquiries
from elsewhere in the system. Another seeks connected 3D regions
of high radar reflectivity, indicating hail or high rainfall. These and
other low-level agents alert a higher-level agent to the possibility of
a microburst, which then looks for the signature of a microburst by
sending queries to other lower level agents (see Fig 3). This system,
although relatively simple, compares well with other more complex
conventional systems [3, 4] in its ability to detect microbursts.

3. SYSTEM ARCHITECTURE
The architecture of the system contains a number of specially de-
veloped agents, a number of existing components, including the
real-time data input system, and the data representation and man-
agement layer which is crucial to the overall architecture.

These components can be run on the one machine or can be run
on different machines across the network. In the pilot we have
successfully run the system with components running on an op-
erational server with real-time input data communications, a test
system on a development machine, and agent driven graphical user
interfaces (GUIs) running on forecaster workstations. See Fig 4.

The components are:

DataStreamOutput

TAFMonitor

DataStreamInput

DataStreamDispatcher

SubscriptionControl

Sends
Sends

Sends

handled by handled by

handled by

Figure 5: Structure of the agent network involved in subscrip-
tion

� A source of TAF messages

� A source of AWS messages

� GUI instances that receive alerts and display them

� The main component of the system that receives TAF and
AWS messages and issues alerts.

These components communicate using TCP/IP or JACK Intelligent
Agents �

�
2 messages, and send objects encoded using tree-table-

xml (see Section 4.1) and serialized TTables contained in JACK
messages.

The main component of the system is an agent system that contains
a DataStreamDispatcher agent and some number of TAFMonitor
agents. The DataStreamDispatcher agent is responsible for manag-
ing subscriptions and for routing messages. A TAFMonitor agent
will subscribe to TAF and AWS messages and will generate alerts
that it sends to the DataStreamDispatcher, which are then routed to
the appropriate subscribers. The structure of the agent component
of the system is depicted in Fig 5.

3.1 Patterns
3.1.1 Publish-Subscribe

The agent network in the Intelligent Alerts system is connected
using the Publish-Subscribe design pattern (see Ch5 in [5]). A
server agent behaves as a publisher and advertises its service to
other agents. Other agents may subscribe to the service and receive
notification of events published by the server agent.

The benefits of the Publish-Subscribe pattern are:-

� Agents can be varied and reused independently without in-
terfering with their respective subscribers or publishers.

� State changes in one agent can trigger state changes in other
agents without knowing how many agents need to be changed.

� Agents can notify other agents without knowing about the
other agents, and avoid tight coupling.

�
JACK Intelligent Agents is a product of Agent Oriented Software

who generously assisted us with this project. See http://www.agent-
software.com.



agentTAF

XML
AWS Decoder one−minute−report

agent

AbsAlert agent

alert event

alerts.MonitorMain

subscription

subscription

subscription

alert event

alert event

alert event

TafAlert agent

gui.SimpleGUI

= agent

= program

subscription

alert

aws.AWSDataSource

alert GUI agent

absalerts.AbsMonitorMain

socket

taf.TafDataSource

system call TTable

VaacAlert
agent

vaac.VaacMailSender vaac.VaacMailMain

email VaacMailSender

alert event

subscription

subscription

forecast
database

Figure 4: Diagram showing broad data-flow within alerts system.

3.1.2 Pipes and Filters
The overall architectural design of Intelligent Alerts is based on the
Pipes and Filters Architectural Pattern (see Ch2.2 in [6]). The Pipes
and Filters pattern provides pipes that allow a system to be struc-
tured and to pass data between adjacent filters. Intelligent Alerts
implements pipes as one-way pipes using the Publish-Subscribe de-
sign pattern where a down-stream (client) agent actively subscribes
to an up-stream (server) agent, and multiple down-stream agents
may subscribe. This modification permits a network of agents to
interact.

The benefits of the Pipes and Filters pattern are:-

� No intermediate files or database entries are necessary. All
information may be stored and transmitted in generic tran-
sient event messages (see Section 4.1).

� Filters (agents) can be recombined to provide new behaviour.
An event pipeline can enable rich, new behaviours [7].

� Support of recombination allows easy reuse of filter (agent)
software components.

4. DATA SHARING
4.1 TTables
A generalized XML format known as tree-table-xml [8] is under
development in the Australian Bureau of Meteorology. Its design is
intended to accommodate current and future meteorological XML
format requirements by being extremely generic. Instead of repre-
senting meteorological metadata in XML tags, tree-table-xml de-
fines a high-level meta-metadata structure called a ttable. This is

not specific to meteorology, but is a generic format capable of han-
dling a wide variety of data. This XML format also separates the
metadata from the data. Its document type declaration (DTD) is
shown below:

<!DOCTYPE tree-table-xml [
<!ELEMENT tree-table-xml (ttable)>
<!ELEMENT ttable (row*)>
<!ATTLIST ttable name CDATA #IMPLIED>
<!ELEMENT row (col+)>
<!ELEMENT col (#PCDATA | ttable)*>
<!ATTLIST col name CDATA #IMPLIED

type CDATA #IMPLIED>]>

Note that the tree-table-xml DTD consists of just four meta-meta
elements: tree-table-xml (the root element), ttable, row and col.
Minimal attributes are defined for bootstrapping metadata: type and
name. The message data is contained in a table called data and the
corresponding metadata is contained in a related table, for instance:
data
station name wind speed wind direction air pressure
Melbourne 13.0 128 1001.0;
Mildura 7.0 172 998.0;
Avalon 20.0 117 1001.0;
metadata
element name unit data type significant digits
station name - string 0
wind speed knots double 3
wind direction degrees int 3
air pressure hectopascals double 4



Each column in the data table has a corresponding row in the
metadata table.

4.1.1 General Processing Techniques
The simple high-level design facilitates the development of soft-
ware that can process a tree-table-xml document without knowing
its content type. For instance, a Java class TTable has been de-
fined that performs generic multi-key sorting and searching of ta-
bles. There is a Java TTableXml class that takes tree-table-xml
documents as input and generates TTable objects as output. It does
not need to know what kind of data is in the document. There is no
limit to the number and type of metadata tables that can be defined
for a data table. These may include any data that a downstream
process may require to adequately use the document, such as a
processing history. tree-table-xml is a canonical XML document
format suitable for internal processing within a meteorological en-
terprise or for exchange of data with other meteorological agencies
with shared software libraries for processing tree-table-xml. A tree-
table-xml document can be used as a request for data. A client pro-
cess can fill out a document with metadata describing the desired
data and (if it is possible to fulfill the request) the document can
be populated with a data table cell and returned to the requesting
process. This lays the groundwork for the service discovery phase
of this project.

4.1.2 Standard Metadata Defined
Metadata (and meta-metadata) are treated as data, and can therefore
reside in a database (or a local XML copy of a central metadata
repository) and be readily updated or extended. Agent metadata
may also be standardized and shared between agents.

Event messages contain a set of TTable objects that are passed from
agent to agent in the agent network, providing information to guide
agent behaviour, and a vehicle for passing value added informa-
tion to other agents. Each agent can interpret the data it receives
by querying the accompanying metadata about element types and
units, etc., shared by all agents in a metadata repository.

The TTable is a sophisticated form of the J2EE Value Object pat-
tern 3. The TTable allows any kind of data to be expressed, includ-
ing meteorological, service description metadata, system adminis-
tration data, and agent oriented information. New data types may
be introduced without impacting negatively on existing agents.

5. AGENT DEVELOPMENT TOOLKIT
The agent development toolkit which we used in this project was
JACK Intelligent Agents [9].

JACK is a third generation agent system based around the concepts
of Belief, Desire, and Intention (BDI) [10]. JACK is built on top of
Java and includes:

� An agent-oriented programming language that extends Java
with agent concepts

� Infrastructure for running distributed agent systems and for
communication between agents

� Support for teams of agents (not used in this project)
�

http://developer.java.sun.com/developer/restricted/patterns-
/ValueObject.html

� An integrated development environment incorporating drag-
and-drop construction of agents from capabilities and plans
(however, plan bodies are textual)

� A design tool for visualizing the structure of an agent system

The concepts that JACK adds to Java are:

� Agents: An agent has capabilities (things it can do) and be-
liefs (information), it handles certain events by using plans.

� Capabilities: A capability is, in essence, a wrapper around
plans, events, beliefs, and sub-capabilities. Capabilities are
analogous to modules in that they are a mechanism for struc-
turing a large system.

� Belief sets: A belief set is similar to a relation in a relational
database. It can be used to store an agent’s knowledge and
state.

� Events: An event is central to the execution mechanism of
JACK (and of other BDI agent systems). An event is posted
when something happens and triggers plans.

� Plans: A plan is what the agent uses to do things. A plan
consists of (i) an event type that will trigger it, (ii) a context
condition that indicates when the plan is applicable, and (iii)
a plan body that is executed when the plan is selected. The
context condition is a logical condition that evaluates to true
or false. The plan body is code written in a superset of Java
(i.e. including JACK constructs).

JACK’s execution model is based around events and plans. For
each event, there is a number of plans that can be triggered by that
event type. This set of plans is the relevant plan-set. When an event
is posted the agent considers the relevant plan-set. For each plan in
the relevant plan-set, that plan’s context condition is evaluated. If
the context condition evaluates to false then the plan is ignored and
the next plan is considered; otherwise the plan is executed.

If the posting event is4 a BDIGoalEvent then failure will be han-
dled by trying alternative plans. Only if all the relevant plans for an
event have been tried will the event (and hence its parent plan) fail.

Yet another type of event that is handled differently is an Infer-
enceGoalEvent. An event type that extends Inference-
GoalEvent will run all applicable plans, rather than just the first
one. For example, suppose we have the following plans, that all
handle the same event e:

Plan name Context condition Plan body
plan1 p(a) print(plan1);
plan2 p(b) print(plan2); false;
plan3 p(b) print(plan3);
plan4 p(b) print(plan4);

Assume that p(a) is false and p(b) is true; then execution will pro-
ceed as follows:

� Case 1, e is a normal event:
�

Actually, if it extends BDIGoalEvent.



1. plan1 is considered - since the context condition is false,
it is ignored.

2. plan2 is considered - since the context condition is true,
it is executed.

3. plan2 is executed, this prints “plan2” and then fails.

4. Since e is a normal event, the plan that posted it fails.� Case 2, e is a BDIGoalEvent:

1. plan1 is considered - since the context condition is false,
it is ignored.

2. plan2 is considered - since the context condition is true,
it is executed.

3. plan2 is executed, this prints “plan2” and then fails.

4. Since e is a BDIGoalEvent, alternative plans are con-
sidered.

5. plan3 is considered - since the context condition is true,
it is executed.

6. plan3 is executed, this prints “plan3” and then succeeds.� Case 3, e is an InferenceGoalEvent:

1. Since e is an InferenceGoal, all plans are considered.

2. plan 1 is considered but ignored (since the context con-
dition is false)

3. plan 2 is considered and executed, printing “plan2” (and
then failing)

4. plan 3 is considered and executed, printing “plan3”

5. plan 4 is considered and executed, printing “plan4”

The BDIGoalEvents provide behaviour which is standard in BDI
systems such as PRS [11], JAM [12], dMars [13] and others.
InferenceGoalEvents however provide a functionality more
directed toward reasoning than acting. All relevant plans (or rules)
are executed. This gives a behaviour similar to expert systems and
is particularly useful for some of the inferencing needed in this sys-
tem where one wants to draw all possible conclusions (as opposed
to taking a single course of action).

6. AGENT BEHAVIOUR
6.1 Floating threshold algorithm
To reduce the number of alerts to the minimum, we have pro-
duced an algorithm that only alerts upon significant change in the
weather conditions (here pressure). This algorithm compares fore-
cast pressure values with current observation values, and initially
alerts when they diverge by more than 2 hectopascals (hPa).

This algorithm employs a ’floating’ threshold, which tracks the ob-
served pressure value up and down, but only in steps of a ’margin’
value. Thus after an initial alert, the system only emits another alert
when the observed value has increased by the margin over the pre-
viously alerted value. The algorithm for observations greater than
the forecast:

initialize: float = forecast + margin
upon new observation (obs):

if obs > float
generate alert
float = obs + margin

else if obs < float - margin
float = obs + margin
(unless less than initial float value)

Observations less than the forecast are similarly tracked with a sep-
arate lower float value.

This algorithm is intended to be as general as possible, so as to
allow it to be used for many numerical forecasts/observations, ie,
temperature, wind speed, visibility, and cloud ceiling. For values
like wind direction, another algorithm will have to be developed to
deal with values wrapping around 360 degrees. Another variant of
the basic algorithm is used for ’absolute’ thresholds, where fore-
casters want to be alerted when wind speed, say, exceeds 25 knots
regardless of the forecast (used by the AbsAlert agent in Fig 4).

6.2 Volcanic Ash Alerts
Partly as an exercise in determining how flexible the alerting sys-
tem is, we put together an alert from a volcanic ash email advisory
service (known as the Volcanic Ash Advisory Centre or VAAC).
To this end, we have created a new email client and subscribed it to
the volcanic email list. These emails were then piped into a tran-
sient Java process which scanned the email for the strings ’volcan’,
’erupt’ and ’ash’ (not all emails to this list are actually about erup-
tions) and the name of any volcano in our region (from a database of
volcano names and locations). If found, the system sends a TTable
message to a JACK volcanic alerting agent, which in turn may trig-
ger an alert.

The volcanic ash alerting agent is available for any other JACK
agent in our Bureau system to subscribe to (see Fig 4). These sub-
scribers will usually be an alert GUI sitting on a forecaster’s desk,
see Fig 6. The alert contains the first 30 lines of the email, so it is
available to the forecaster within the GUI to allow manual elimina-
tion of false positives.

This system took about 2 days to put together, demonstrating that
our basic mechanism is simple, flexible and functional.

7. DEPLOYMENT ISSUES
The alert system has had its first exposure to aviation forecasters,
the alert GUI used can be seen in Fig 6. This provided valuable
feedback on a number of issues, mostly around GUI look and feel,
which we will address in the near future.

There were a number of deployment issues. These issue were
broadly: flexibility, self-healing from system failure, and system
evolvability.

7.1 Flexibility
To maximize flexibility, we have implemented the publish-subscribe
pattern as noted above: when an agent subscribes to a service, it is
granted a lease for a certain period. It then must resubscribe be-
fore that period has expired to continue getting the service. In this
way, if a service is added or replaced by another, clients are able to
seamlessly reconnect to the new service (if it has the same name).
See chapter 12 of [7] for more on leasing.

7.2 Self-healing from system failure
All distributed systems are vulnerable to failures in software, ma-
chines and networks, any one of which may potentially bring down
the system. Manual intervention to fix failures is unrealistic and
self-healing is necessary. In the publish-subscribe pattern, the server
checks whether clients still have a valid lease before providing the
service, and if not discards that clients subscription. On the client
side, if a server fails the client will attempt to resubscribe until the



Figure 6: Example alert GUI showing volcanic ash mouse-over information

service is again available. In this way the entire system self heals
without immediate human intervention.

7.3 System Evolvability
Software upgrades, updates and withdrawal of agents would also
leads to system failure if this were not managed.

� The use of JACK facilitates easy implementation of new agent
behaviour by adding in new plans within a capability that
are applicable in certain situations, adding new capabilities
within an existing agent, or adding new agents to the system..
For instance, a new subsystem which alerts on volcanic ash
detections was implemented in less than two days.

� Leasing allows developers to withdraw and replace a compo-
nent safely.

� Overriding the Java serialVersionUID on transmitted classes
(to remove dependency on particular compilations of classes
at either end of a message transmission via serialization) al-
lows components commonly transmitted between machines
to be extended and replaced incrementally and safely.

� The use of the generic data object TTable (see Section 4.1)
and its externalized text format tree-table-xml allows safe ex-
tension of data structures without recompilation.

The subscription model made the system very flexible, with alert
GUIs running both on the forecasters desk, and several display-
ing the same data on the development machine. The GUI on the
forecaster desk subscribed only to TAF alerts, whereas the devel-
opment GUI subscribed to both TAF alerts and volcanic ash alerts.
The subscriptions are controlled by a drop-down menu on the GUI.

The forecasters now have access to the alert GUI via a menu op-
tion on their workstations, so we can easily expose them to future
versions of the system simply by uploading new Java library files.

8. CONCLUSION AND FUTURE WORK
This paper has described an agent alerting system installed at the
Australian Bureau of Meteorology. This system has evolved from
an experimental agent system devoted to detecting microbursts, and
is now at the pilot stage of providing alerts based upon discrepan-
cies between forecast pressure and observations, and alerts from
a volcanic ash alert mailing list. This pilot has given the authors

confidence in the agent approach to system building in the Bureau
context, as well as providing ideas for future work with this sys-
tem. The subscription /leasing model employed to improve robust-
ness and flexibility has also introduced a number of research issues
for the future, namely: how will agents discover services that they
need robustly and without human intervention, how will services
advertise themselves to potential clients, and how to encode data
so it describes its own semantics?

In the future we intend to expand the scope of the system so it alerts
on an increasing variety of phenomena: for instance discrepancies
between forecasts and observations for more data types like temper-
ature and wind speed, serious weather events such as microbursts,
storms, and hail, and system events like model availability, failed
weather radar stations or communication links down.

This work will be carried out in a collaboration between the Bureau
of Meteorology, the RMIT University Agents Group and Agent
Oriented Software. This work is supported by an Australian Re-
search Council Linkage Grant (grant LP0347025, “Open agent ar-
chitectures for intelligent distributed decision making”).

9. REFERENCES
[1] Targett, P.S.: Predicting the future of the meteorologist: a

forecaster’s view. Bulletin of the Australian Meteorological
and Oceanographic Society 7 (1994) 46–52

[2] Dance, S., Potts, R.: Microburst detection using agent
networks. Journal of atmospheric and oceanic technology 19
(2002) 646–653

[3] Albo, D.: Microburst detection using fuzzy logic. Technical
report, National Center for Atmospheric Research, Boulder,
Colorado (1994)

[4] Stoll, S.: Microburst detection by the low-level wind shear
alert system. Weather 46 (1991) 334–347

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston MA (1995)

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M.: Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley and Sons, Chichester (1996)

[7] Edwards, W.K.: core JINI. Prentice Hall, New Jersey (2001)



[8] Gorman, M., Kelly, J., Ryan, C., Sanders, C.: Meteorological
data and XML. In: Meeting of Expert Team on Data
Representation and Codes, Prague, Czech Republic,
Commission for Basic Systems, World Meteorological
Organization (2002) Available at
http://www.wmo.ch/web/www/DPS/ET-DR-C-PRAGUE-
02/Doc6(1).doc.

[9] Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack
intelligent agents - components for intelligent agents in java.
Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia (1998)

[10] Rao, A.S., Georgeff, M.P.: An abstract architecture for
rational agents. In Rich, C., Swartout, W., Nebel, B., eds.:
Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning, San
Mateo, CA, Morgan Kaufmann Publishers (1992) 439–449

[11] Georgeff, M.P., Lansky, A.L.: Procedural knowledge.
Proceedings of the IEEE Special Issue on Knowledge
Representation 74 (1986) 1383–1398

[12] Huber, M.J.: A BDI-theoretic mobile agent architecture. In:
Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), Seattle, WA (1999)

[13] d’Inverno, M., Kinny, D., Luck, M., , Wooldridge, M.: A
formal specification of dMARS. In Singh, M., Rao, A.,
Wooldridge, M., eds.: Intelligent Agents IV: Proceedings of
the Fourth International Workshop on Agent Theories,
Architectures, and Languages. Volume 1365.,
Springer-Verlag LNAI (1998) 155–176


