
Verifying Model Oriented Specifications through Animation

Ed. Kazmierczak Michael Winikoff Philip Dart

fed,winikoff,philipg@cs.mu.oz.au
Department of Computer Science

The University of Melbourne

Abstract

In this paper we demonstrate how light weight tools can be used to increase the level of confidence in
Z specifications. In particular we outline the Pipedream approach to exploringZ specifications through
animation, and illustrate the range of analyses that can be performed. We argue that, while a light weight
approach does not give the same levels of assurance that an automated reasoning system would, it does
give levels of assurance which are adequate for most projects and with significantly less overhead. We
illustrate how animation can be used to perform verification using the example of a simple dependency
management system.

Keywords: Animation, Verification, Assurance, Formal Methods,Z.

1 Introduction

All software engineering projects should provide a high level of assurance, that is, a high degree of con-
fidence, that the final system meets the needs for which it was engineered. An important factor that distin-
guishes engineering from ad hoc development is in being able to exert control over the level of assurance
achieved in a project to suit the purpose of the project. Life and livelihood critical systems require the
highest levels of assurance that the system meets the needs for which it was engineered. For many projects,
however, lesser levels of assurance are acceptable.

In this paper our interest is in improving the outcomes of requirements analysis by using formal methods,
or more precisely mathematical modelling, to determine, analyse and verify requirements. To this end, we
need to create mathematical models of the systems of interest, which when written in a language likeZ
become the formal specification of the system. Unfortunately, there are few methods for developing and
validating models of large complex systems and not much by way of tool support.

By building a model of a system it is possible to evaluate the quality1 of the requirements or a design
prior to constructing the system. If the model is expressed in a formal notation then the evaluation of the
model can be assisted by various tools. Ideally, modelling is an iterative process [9, 15] with short cycle
times providing rapid convergence to a correct model of the proposed system. An iteration consists of a
modelling step, followed by an evaluation of the model, followed by an improvement of the model based

1The IEEE RecommendedPractice for Software Requirements Specifications [10] lists eight characteristics of a quality Software
Requirements Specification: that it is correct, unambiguous, complete, and consistent, and that the requirements are ranked for
importance and stability, and are verifiable, modifiable and traceable.

1

on the evaluation results. We can evaluate a model byexploring2 it and its consequences using a range of
techniques and tools such as theorem proving, animation, testing, and prototyping. Each of these exploration
methods has advantages and drawbacks.

In this paper we focus on animation. Animating specifications is particularly promising for developing
formal specifications for a number of reasons. First, and arguably most importantly, animation can be highly
automated and thus cheap to perform. In addition, static analysis of the specification can help to provide
insight into the specification and the assumptions and implications implicit in the model. Second, animation
can be very effective at detecting problems with the specification because animating a specification provides
a means of testing a modelinteractively. If the properties that we are interested in can be formulated in
the mathematical language of the specification then these too can be tested interactively against the model.
These two properties of animation make animation very suitable for earlier iterations when the model is
more likely to be incorrect or incomplete and still evolving.

The third reason why animation is promising is that it does not require extensive expertise like that re-
quired for theorem proving. The developer does not need detailed knowledge of the underlying mathematical
theories or the proof strategies required to prove theorems. The fourth reason why animation is promising
is that it allows a (formal) specification to be demonstrated to a client interactively which is useful since
it permits validation to be carried out. By bringing a formal specification to life, animation enables clients
and domain experts to provide valuable feedback. Finally, unlike some prototyping methods, an explicit
relationship between the specification and the animation can be maintained which prevents the divergence
of the specification and the animation.

One drawback of animation is that, like other testing oriented approaches, it relies on finding counter-
examples to properties, that is it can’t always be shown that a property holds but rather a counter-example
to property is found and so shows that for some values at least, it is false. Consequently, an animation can
neverprovethat the formulation of a model is consistent or correct or complete but it can be used to obtain
the same level of confidence in the consistency, correctness or completeness of the model as that given by
testing.

Animation falls into the class oflight weight[5] approaches to formal methods. A light weight approach
trades off completeness for speed and ease of use. It is characterised by an emphasis on automation and by
a willingness toaccept lower levels of assurance in return for more rapid feedback and a reduced reliance
on user-expertise. The light weight approach is in contrast to the rigorous or formalist verification methods
which rely more on mathematical proof and automated reasoning. Consequently, light weight tools and
techniques are viewed in this paper as complementary to rigorous or formal verification methods. Further,
light weight techniques have been successfully applied to industrial projects [1, 2] which makes them the
subject of current interest in formal methods.

Perhaps a good analogy for the kinds of assurance given by animation is that given by a spell-checker.
The spell-checker can be used to detect most spelling errors in a document and so increase our level of
confidence in the document, but no-one would claim that once the document has been spell-checked then
it is error free. The spell-checker analogy is not quite accurate because even with light weight tools the
levels of confidence that are provided should be as high as possible without sacrificing their ease of use and
their lower conceptual overheads. Note that despite their shortcomings, spell-checkers are quite useful in
practice.

While there are clear benefits to animating specifications, the analysis and verification of models using
typical animation tools is not well understood. Previous papers in animatingZ specifications have concen-
trated on describing tool architectures as in [16], outlining approaches to animatingZ specifications as in

2Exploration here is taken to mean both the verification and validation of the model as well as the exercising of the model
by executing various scenarios or test cases which increase the developer’s and the client’s understanding of the system and the
problem domain.

2

[17], or showing examples of animation [3, 4]. Little, if any, attention has been given to the way in which
animation can be used to explore a specification for verification or validation purposes. None of these papers
directly discuss the exploration of models expressed in theZ notation, which is our major aim.

Previous papers discussing light weight tools concentrate on showing how light weight tools can aid the
requirements modelling process as in [6], but only by conducting non-rigorous analyses and verification of
the model against client understanding. These studies are valuable, but in this paper we seek to go beyond
this and to put light weight approaches to formal methods on a more rigorous basis.

The aim of this paper is twofold: (1) to study the analysis and verification of a simple dependency
management system written inZ using the Pipedream light weight tool set3, and (2) relate the verification
back to the requirements modelling and analysis task. The primary contribution of this paper is to argue that
animation can be used as an exploration tool and that the exploration activity enabled by animation can be
used to perform a range of verification and validation tasks, and is highly effective as a cheap way of finding
errors.

The remainder of this paper is organised as follows. In section 2 a simple example is presented which is
used in sections 3 and 4 to illustrate the major concepts. In section 3 we describe the Pipedream approach and
in particular we describe themodeandsubtypeanalyses which are used to derive computational information
from Z specifications. In section 4 we show how the Pipedream tools can be used to increase our level of
confidence in the Dependency Management System model. We conclude in section 5

2 The Dependency Management System

The Dependency Management System (DMS) is presented in [7] and essentially maintains a directed acyclic
graph of unspecified data. The data stored in the dependency management system is a parameter to the
specification

[DATA]

and is not analysed further. The state schema is then given below wherenodesis the set of nodes in the
graph,ddo (directly depends on) is the set of dependencies (or edges) in the graph andtc is the transitive
closure. The initialisation sets thenodesto ; and from this and the state invariant it can be inferred that
ddo= ; andtc = ;.

DepManSys
nodes: FDATA
ddo : DATA$ DATA
tc : DATA$ DATA

ddo� nodes� nodes
tc = ddo+

: (9 x : DATA� (x; x) 2 tc)

InitDepManSys
DepManSys0

nodes0 = ;

Throughout the remainder of the specification the usual conventions for� and� are assumed [12]. With
these definitions in place there are now two operations for observing properties of the dependency graph:

3Pipedream is the name of the project researching light weight tools and methods at The University of Melbourne. The
Pipedream approach to animation is discussed in more detail in section 3.

3

DependsOn
�DepManSys
d? : DATA
dependents! : FDATA

d? 2 nodes
dependents! = fn : nodesj (n; d?) 2 tcg

Finally, there are the usual operations for adding and removing nodes

AddNode
�DepManSys
d? : DATA

d? =2 nodes
nodes0 = nodes[fd?g
ddo= ddo0

RemoveNode
�DepManSys
d? : DATA

d? 2 nodesn ran ddo
nodes0 = nodesn fd?g
ddo0 = fd?g �C ddo

and adding and removing dependencies.

AddDependency
�DepManSys
x?; y? : DATA

fx?; y?g � nodes
ddo0 = ddo[f(x?; y?)g
nodes0 = nodes

RemoveDependency
�DepManSys
x?; y? : DATA

(x?; y?) 2 ddo
ddo0 = ddon f(x?; y?)g
nodes0 = nodes

The dependency management system presented in this section will be used throughout the remainder of
this paper to illustrate the concepts involved in animating the specification as well as illustrating how several
common properties ofZ specifications can be verified.

3 The Pipedream Approach

3.1 Analysing and Animating Z Specifications

The Pipedream approach to creating and verifying models is to combine static analysis and animation to
systematically explore properties of the model, including the correctness and completeness of thefunctions
specified in the model, and thebehaviourimplied by the model.

After typechecking, the first step is to translate the type correctZ specification into first order set theory.
Each definition inZ is translated to its underlying semantics expressed as the definition of a predicate which
extends first order set theory. Consider, for example, the schema

4

DepManSys
nodes: FDATA
ddo : DATA$ DATA
tc : DATA$ DATA

ddo� nodes� nodes
tc = ddo+

: (9 x : DATA� (x; x) 2 tc)

which is translated to

8 nodes8ddo8 tc � DepManSys(nodes; ddo; tc),
nodes2 FDATA^ ddo2 DATA$ DATA^ tc 2 DATA$ DATA^
ddo� nodes� nodeŝ tc = ddo+ ^ : (9 x � (x; x) 2 tc)

Note that the full translation also includes a global environment which is passed around and used to access
global values such asDATA.

The translated forms of theZ statements constitute a set of clausal definitions [8] for theZ constructs
in the specification. This will be referred to as theclausal formof a Z construct. We will also refer to the
translation of theZ specification as the clausal form of the specification. The details are given in [20].

The clausal form of theZ specification is not necessarily executable. Indeed, the predicates in the
clausal form of the specification may involve infinite or even uncountable sets and predicates which are not
computable. The next step is toanalysethe clausal form of theZ specification in order to derive more
information about the objects making up the specification: whichmodespredicates can be executed in, the
type structure of the specification, which data sets are finite and which predicates are deterministic. With
this information the clausal form of the specification can betransformedso that it is more readily executed.

Mode analysis is used to determine control information. The control information specifies how to ex-
ecute a formula by specifying the flow of control, for example, consider the predicateAddNodebelow

AddNode(nodes; nodes0; ddo; ddo0; tc; tc0; d?),
DepManSys(nodes; ddo; tc)^ DepManSys(nodes0; ddo0; tc0)
^ d? =2 nodeŝ ddo= ddo0 ^ nodes0 = nodes[fd?g:

One possible way of computing with this predicate is to provide values fornodes, ddo andd? and then
compute the value fornodes0, ddo0, tc and tc0. This mode forAddNodeis where the values ofnodes, ddo
andd? determinethe values ofnodes0, ddo0, tc andtc0 which is written as

AddNode:: fnodes; ddo; d?g) fnodes0; ddo0; tc; tc0g:

Another mode of use is to provide the values fornodes0, ddo0 andd? and compute possible values ofnodes,
ddo, tc andtc0, that is, the mode

AddNode:: fnodes0; ddo0; d?g) fnodes; ddo; tc; tc0g:

In the first mode the values ofnodes, ddo andd? are required while in the second mode, the values for
nodes0, ddo0 andd? need to be supplied. If the setnodes0 is finite thennodescan easily be computed as the
set difference ofnodes0 andfag, but observe that the algorithm for computingnodes0 in the first mode is
quite different to that for computingnodesin the second mode. Thus, the control information is essentially

5

an abstract description of the possible combinations of arguments and computed results in a predicate. Of
course, theAddNodepredicate can also be assigned the mode

AddNode:: fnodes0; ddo0; nodesg) fd?; ddo; tc; tc0g

Modes play a number of roles in the analysis. First, if a predicate can be assigned a mode then there is
a procedure forexecutingthe predicate in that mode, for example, ifAddNodeis assigned the mode

AddNode:: fnodes0; ddo0; d?g) fnodes; ddo; tc; tc0g (1)

then there is a procedure for computingnodes, ddo, tc and tc0 from nodes0, ddo0 and d?. Thus, mode
analysis determines which predicates can be given an executable semantics and how they can be used in
practice. Second, the modes determined for a predicate can be used to select an efficient implementation for
a predicate. If mode analysis determines the mode in (1) forAddNodeand finiteness analysis detects that the
definition ofAddNodehas only one possible result in this mode then a function can be used to implement
theAddNodepredicate in this mode. On the other hand, to implementAddNodein the mode

AddNode:: fnodes0; ddo0; d?g) fnodes; ddo; tc; tc0g

requires finding all tuples(nodes; ddo; tc; tc0) such thatnodes0 = nodes[fd?g and the predicateDepManSys
is satisfied. This in turn requires that the union operationunion(x; y; z), z= x[y can be used in the mode
fzg) fx; yg. The algorithms for mode analysis in the context of animatingZ specifications are given in
[18, 19].

Z’s type system consists of a class ofbasetypes and can be simply extended to include a hierarchy of
subtypes[13, 14] which are defined in terms of the base types. Operations likea are only guaranteed to
return a sequence if the two arguments are also sequences, but sequences themselves are defined in terms of
the base typeP(N� A) whereA is the type of the elements of the sequence. Subtype analysis determines
which checks can be removed in the clausal form of aZ paragraph.

For example, consider theDepManSysschema which includes a conjunct of the form: 9 x : DATA �
(x; x) 2 tc which translates to: 9 x; y � x 2 DATA^ y 2 tc ^ y = (x; x). Since the specification is type
correct we can remove the conjunctx 2 DATAwhich leaves the predicate: 9 x; y � y 2 tc ^ y = (x; x).
The mode analysis returns the modeftcg) fg and consequently determines that the predicate is executable
for input tc. Indeed, this can be seen by recognising thaty 2 tc can be executed in the modeftcg) fyg
and theny = (x; x) is a simple test.

3.2 Soundness of the Animation

The underlying computational model, which is used to execute the clausal form of the specification, is the
SLDNF-resolution strategy [8] used in Mercury [11]. This seems natural as the strategy is explicitly aimed
at executing programs composed of clauses efficiently. The analyses discussed in the previous section are
used to transform the clauses into an equivalent form which is executable and which is issoundwith respect
to the SLDNF-resolution strategy. The developer can runqueriesand get backanswers.

Consider again the dependency management system from section 2. The state, initialisationandDependsOn
schemas from the dependency management system are shown in their translated and optimised form in fig-
ure 1. Given thatDependsOncan be executed in the mode

fnodes; ddo;d?g) fdependents!; nodes0; ddo0; tc0; tcg

and that we have the following definitions

nodes= fa; b; c; dg;ddo= f(a; b); (a; c); (a;d)g; andd? = c

6

Figure 1 The state, initialisation andDependsOnschemas in translated form.

DepManSys(nodes; ddo; tc),
finite(nodes) ^ ddo� nodes� nodeŝ tc = ddo+ ^ :9 x � (x; x) 2 tc:

InitDepManSys(nodes0; ddo0; tc0) ,
DepManSys(nodes0; ddo0; tc0) ^ nodes0 = ;:

DependsOn(nodes; ddo; tc;nodes0; ddo0; tc0; d?; dependents!),
DepManSys(nodes; ddo; tc)^ DepManSys(nodes0; ddo0; tc0) ^
d? 2 nodeŝ finite(dependents!)^
nodes0 = nodeŝ tc0 = tc ^ ddo0 = ddo^
dependents! = fn : nodesj (n; d?) 2 tcg:

A query of the form

DependsOn(nodes;ddo; tc;nodes0; ddo0; tc0; d?; dependents!) (2)

can be presented to the system which yields the answerdependents! = fag. Perhaps the most important
property for an animation, like that in figure 1, is that the animation system issound. If a query is supplied
to the system and an answer is obtained, for example, the answerdependents! = fag4 in the case of the
query above, then that answer must be a logical consequence of the clauses making up the program.

The answerdependents! = fag is actually a substitution� = fdependents! 7! faggwhich, if substituted
back into the original query, makes it true. In general, ifA is the clausal form of a specification and� is a
substitution resulting from an answer to a queryG thenG� is a logical consequence ofA, that is,

A j= G�: (3)

Further, we also want to be able to conclude thatG� also follows from the originalZ specificationSand this
requires thatA is sound with respect toS, that is, ifA j= G� thenG� is a consequence of the semantics of
theZ specification. Our animation strategy is aimed at preserving this property.

In the absence of property (3) the developer could never be certain that an answer derived from the
system is a consequence of the specification. Prolog systems, because of their omission of the occurs check
in unification can violate property (3) and so extra care must be taken if generating Prolog to ensure that all
unifications aresafe[8]. Fortunately, Mercury uses its own static mode, type and determinism analyses to
ensure that (3) is not violated. The omission of the occurs check in Prolog is largely a matter of efficiency
[8] but the loss of soundness makes Prolog an unsafe language for animation.

4 Verifying Properties of the Dependency Management System Model

Once a specification has been written then there is a need converge rapidly to a correct model of the system.
In each iteration of the modelling/evaluationcycle, we can determine if we have captured properties essential
to the system by testing these properties against the specification. This section illustrates how this testing
technique can be used to verify specific properties of the dependency management system specification.

4Along with values fortc, tc0, nodes0 andddo0

7

4.1 Performing an Initialisation Check

The usual check performed for the initialisation schema ensures that the initial state is a valid state, that is,
the property:

9 InitDepManSys� true

In the case of the dependency management system this means simply showing thatInitDepManSysis a
logical consequence of the clausal form of the specification which in turn means simply executing the query,

9nodes0; ddo0; tc0 � InitDepManSys(nodes0; ddo0; tc0)

Using theInitDepManSyspredicate in this way means using it in the mode

InitDepmanSys:: fg) fnodes0; ddo0; tc0g

which is a valid mode forInitDepManSysand so the query can simply be executed. The resulting execution
appears as follows

` InitDepManSys(nodes0; ddo0; tc0)
` nodes0 = ; ^ DepManSys(nodes0; ddo0; tc0)
` DepManSys(;; ddo0; tc0)
` finite(;) ^ ddo0 � ; � ; ^ tc0 = ddo0+ ^ : 9Y � (Y; Y) 2 tc0

` true

which succeeds because all of the conjuncts in the third line are executable. Note that� must be used in the
modex� y :: fyg) fxg in order to do this.

4.2 Verifying Preconditions

A more interesting check is to compare an expected precondition with the calculated precondition of an
operation5. Consider the following modified version of theRemoveNodeschema

RemoveNodeA
�DepManSys
d? : DATA

d? 2 nodesn randdo
nodes0 = nodesn fd?g
ddo0 = ddo

The expected precondition for theRemoveNodeA is that the dependency management system stateDepManSys
is valid and that no nodes in the system depend on the node to be removedd?. The calculated precondition
is 9DepManSys0 � RemoveNodeA. The check is to show that the expected precondition is stronger than the
calculated precondition, that is, we want to show a property of the form

8DepManSys; d? : DATA� d? 2 nodesn randdo) 9DepManSys0 � RemoveNodeA (4)

5See [12] for more on the precondition check.

8

The query corresponding to this property is

: 9 nodes; ddo; tc;d? � DepManSys(nodes;ddo; tc) ^ d? 2 nodesn randdo^
: 9 nodes0; ddo0; tc0 � RemoveNodeA(nodes; ddo; tc; d?; nodes0; ddo0; tc0)

which would return either true or false but cannot be moded. However, we can execute specific instances of
this query, for example, given

nodes= fa; bg; ddo= fa 7! bg and d? = a

we can execute the query which fails and this in turn means that the values above give a counter-example to
the conjecture. This is a similar approach to that used in model checking. The sequence of execution steps
appears as follows:

` : 9 tc � (DepManSys(fa;bg; fa 7! bg; tc) ^ a 2 fa; bg n ranfa 7! bg ^

: 9 nodes0; ddo0; tc0 � RemoveNodeA(fa; bg; fa 7! bg; tc; nodes0; ddo0; tc0; a))

` : (: 9 nodes0; ddo0; tc0 � RemoveNodeA(fa; bg; fa 7! bg; fa 7! bg+; nodes0; ddo0; tc0; a))

` 9nodes0; ddo0; tc0 �

fa 7! bg � fa; bg� fa; bg ^ tc = fa 7! bg+ ^ : (9 x � (x; x) 2 fa 7! bg+) ^

a 2 fa; bg n ranfa 7! bg ^ nodes0 = fa; bg n fag ^ ddo0 = fa 7! bg ^

fa 7! bg � fbg � fbg ^ tc0 = fa 7! bg+ ^ : (9 x � (x; x) 2 fa 7! bg+)

The second step is derived from the first step by unfoldingDepManSysby its definition and then evaluating
all of the conjuncts inDepManSysanda 2 fa; bgn ranfa 7! bg to true6 The predicate in the third step fails
because of the conjunctfa 7! bg � fbg � fbg which is no longer true aftera has been removed from the
set of nodes. The statementddo0 = ddoin theRemoveNodeA schema is at fault.

The failure in the third step offa 7! bg � fbg � fbg needs to be related back to the specification in
order to make the deduction thatddo0 = ddoleads to the problem. From the method viewpoint, a property of
the dependency management system was conjectured and then shown to false by finding a counter-example.
If a theorem prover were being used to prove this property, a counter-example would still have been needed
in order to show the negation of the conjecture. Consequently, in this case the same method of proof has
been used in the animation as would have been used in a theorem prover to show the conjecture false.

4.3 A Simple Reachability Property

More challenging than properties of schemas are properties of traces. Define a relationR to be non-
branchingif and only if

8 x; y; z � xRz^ yRz) x = y;

that is if the relationR is injective. Suppose we are interested in the relationddoin the dependency manage-
ment system and its branching properties. Define the schema

NonBranching
DepManSys

ddo2�

6We have already discussed the execution of: 9 x � (x; x) 2 tc in section 3.1.

9

It is obvious that theAddDependencyschema does not in general preserve the non-branching property. If
the dependency management system is in a state which is non-branching after applying theAddDependency
operation, must it have been in a non-branching state before the operation? The formulation appears as
follows

8AddDependency� NonBranching0) Nonbranching

The logically equivalent query is

: 9 nodes; nodes0; ddo; ddo0; tc; tc0; x?; y? �
AddDependency(nodes;ddo; tc; nodes0; ddo0; tc0; x?; y?) ^ NonBranching(nodes0; ddo0; tc0) ^

: NonBranching(nodes; ddo; tc)

which has the modefnodes0; ddo0; x?; y?g) fnodes; ddo; tc; tc0g. Consequently let

nodes0 = fa; b; cg; ddo0 = fa 7! b; b 7! cg; x? = a andy? = b:

The key point in executing this query is that theAddDependencymust be executedbackwards, that is, the
values of variables in the pre-statenodes, ddoand tc must be obtained from the values of the variables in
the post-state. The predicateNonBranchingin the conclusion acts only as a test thatddo in the pre-state
is non-branching. It is the relational aspects of logic programming languages which permit this kind of
execution The sequence of execution steps appears as follows:

` : 9nodes; ddo; tc; tc0 �
AddDependency(nodes;ddo; tc; fa;b; cg; fa 7! b; b 7! cg; tc0; a; b) ^
NonBranching(fa;b; cg; fa 7! b; b 7! cg; tc0) ^
: NonBranching(nodes; ddo; tc)

` : 9nodes; ddo; tc; tc0 �
(DepManSys(nodes;ddo; tc)^ DepManSys(fa; b; cg; fa 7! b; b 7! cg; tc0) ^

fa; bg � nodeŝ fa 7! b; b 7! cg = ddo[fa 7! bg ^ fa; b; cg= nodes) ^
NonBranching(fa;b; cg; fa 7! b; b 7! cg; tc0) ^
: NonBranching(nodes; ddo; tc)

` : 9ddo; tc �
ddo[fa 7! bg = fa 7! b; b 7! cg ^ DepManSys(fa; b; cg;ddo; tc) ^
: NonBranching(fa; b; cg;ddo; tc)

The two calls to theDepManSysin the second step are tests to ensure that the values of the variables in the
pre-state and the post-state satisfy the state invariant. The key step in executingAddDependencybackwards
is to determineddo from fa 7! b; b 7! cg = ddo[fa 7! bg andnodesfrom fa; b; cg = nodes. Once
this is donetc andtc0 are easily determined and the remaining conjuncts are simple executable tests and this
example succeeds.

We can vary the values supplied to the query in above in order to increase the coverage of the input
domain and the cases of interest. Each successful test increases the level of confidence that the property
holds of the specification. Further, we can start in a particular state and keep executingAddNodeand
AddDependencypredicates until we reach the initial state. More generally, for unsafe states, this procedure
would let us determine if that state was reachable from the initial state.

5 Conclusions/Further work

The ability to execute predicates in different modes allows the specification to be explored in a number of dif-
ferent ways. The examples in section 4 demonstrate some of the possibilities. There, we’ve illustrated how

10

a check on the initialisation can be performed, how a pre-condition check can be performed and have indic-
ated how a more complex property like a reachability property can be tested. From a modelling perspective,
these tests increase our confidence in the consistency and correctness of the model. More interestingly, the
testing of the non-branching property illustrates how trace properties can be explored interactively, and can
be used to provide insight into the impliedbehaviourof the model. The analysis of predicates helps the test-
ing process. We can readily see from the mode analysis which values need to be provided and consequently
which domains need to be covered by the tests. Further, the tests were completely automatic once the desired
property had been properly formulated which facilitates exploration of a specifications by inexpert users.

The general method for exploring specifications is characterised by a search for counter-examples and
this is no different to testing methods in general. However, in Pipedream we are not simply executing
operations to test the values resulting from the operations for certain test cases. We are using animation
to explore general properties of the specification and these properties can be any assertion which can be
expressed in the language of the specification. To carry out this kind of exploration requires that the tools
are logically sound7. The Pipedream approach draws on results from logic programming and analysis to
achieve this.

In addition to continuing to develop our toolset, we intend to develop a collection of properties and
techniques for verifying and/or testing these properties using animation technology. In particular, the ap-
plication of animation to validation activities (by demonstration to clients and/or domain experts) deserves
further investigation. Finally, we intend to formally prove our tools correct, and to look at the benefits and
issues involved in integrating our tools with other tools such as theorem provers.

Acknowledgements

The authors would like to thank Leon Sterling at The University of Melbourne for his interest in and support
of this work, Dan Hazel and Owen Traynor at the University of Queensland for their interest and many
useful discussions, and the SVRC for their support of Michael Winikoff’s visit there.

References

[1] Juan Bicarregui, Jeremy Dick, Brian Matthews, and Eoin Woods. making the most of formal specific-
ation through animation, testing and proof.Science of Computer Programming, 29:53–78, 1997.

[2] Steve Easterbrook, Robyn Lutz, Richard Covington, John Kelly, Yoko Amp, and David Hamilton.
Experiences using lightweight formal methods for requirements engineering.IEEE Transactions on
Software Engineering, 24(1), 1998.

[3] Daniel Hazel, Paul Strooper, and Owen Traynor. Requirements engineering and verification using
specification animation. Manuscript, May 1998.

[4] M A Hewitt, C M O’Halloran, and C T Sennett. Experiences with PiZA, an animator for Z. In
Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors,ZUM’97: The Z Formal Specification
Notation, pages 37–51. Springer, April 1997. LNCS 1212.

[5] D. Jackson and J. Wing. Lightweight formal methods.IEEE Computer, 29(4):21, April 1996.

7A property which is absent from other Z animation tools.

11

[6] Xiaoping Jia. A pragmatic approach to formalizing object-oriented modeling and development. In
Proc. 21st Annual Int’l Computer Software and ApplicationsConf., pages 240–245, Washington, D.C.,
USA, August 1997.

[7] Peter Lindsay and Erik van Keulen. Case studies in the verification of specifications in VDM and Z.
Technical Report 94-3, Software Verification Research Center, Department of Computer Science, The
University of Queensland, March 1994.

[8] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.

[9] D.N.P. Murthy, N.W. Page, and E.Y. Rodin.Mathematical Modelling: A Tool for Problem Solving in
Engineering Physical, Biological and Social Sciences. Pergamon Press, 1990.

[10] Software Engineering Standards Commitee of the IEEE.IEEE Recommended Practice for Software
Requirements Specifications. IEEE, 1993.

[11] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an efficient purely declarative
logic programming language. InProceedings of the Australian Computer Science Conference, pages
499–512, February 1995.

[12] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer
Science, 2nd edition, 1992.

[13] J. M. Spivey. Richer types for Z.Formal Aspects of Computing, 8:565–584, 1996.

[14] J. M. Spivey and B. A. Sufrin. Type inference in Z. In D. Bjørner, C. A. R. Hoare, and H. Langmaack,
editors,VDM and Z – Formal Methods in Software Development, volume 428 ofLecture Notes in
Computer Science, pages 426–438. VDM-Europe, Springer-Verlag, 1990.

[15] A.M. Starfield, K.A. Smith, and A.L. Bleloch.How to Model It: Problem Solving for the Computer
Age. McGraw-Hill Publishing Company, 1990.

[16] Leon Sterling, Paolo Ciancarini, and Todd Turnidge. On the animation of “not executable” specifica-
tions by Prolog.International Journal of Software Engineering and Knowledge Engineering, 6(1):63–
87, 1996.

[17] M. M. West and B. M. Eaglestone. Software development: Two approaches to animation of Z specific-
ations using Prolog.IEE/BCS Software Engineering Journal, 7(4):264–276, July 1992.

[18] M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyping using formal specifications. In Chris
McDonald, editor,Proceedings of the 21st Australasian Computer Science Conference, pages 279–
293. Springer-Verlag, February 1998.

[19] Michael Winikoff. Analysing modes and subtypes in Z specifications. Technical Report 98/2, Depart-
ment of Computer Science, Melbourne University, 1998.

[20] Michael Winikoff and Philip Dart. Translating Z to logic. Technical Report 97/14, Department of
Computer Science, Melbourne University, 1997.

12

