L ogic Programming with Linear Logic

Michael David Winikoff

1997

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

Department of Computer Science
School of Electrical Engineering and Computer Science
The University of Melbourne

Parkville, Victoria 3052
AUSTRALIA

Abstract

Programming languages are the basic tools of computer science. The design of a good
programming language is a trade-off between many factors. Perhaps the most impor-
tant and difficult trade-off is between execution efficiency and programmer efficiency.
Higher level languages reduce the amount of work the programmer has to do; however
they have, to date, been less efficient than lower level languages. That lower level lan-
guages are necessarily more efficient isapiece of folklore which isunder attack — higher
level languages are constantly coming closer to the performance of the lower level lan-
guages. A consequence of this constantly closing performance gap isthat the abstraction
level of programming languages is slowly but inevitably rising.

A class of programming languages which has been described as “very high level” is
declarative programming languages. Declarative programming languages have simple
formal semantics and are easier to reason about and to construct tools for than more tra-
ditional programming languages. However these languages do suffer from a number of
problems. They are weak at expressing side effects and concurrency. Side effects are
generally used to perform I/O and as a result declarative languages have been weak at
expressing 1/0. Declarative languages are also weak at expressing concurrency without
compromising their semantic purity and as aresult tend to be weak at expressing graph-
ical user interfaces.

Girard's linear logic promises solutions to some of these problems — linear logic is
capable of modelling updates, it hasinspired linear types which enable side effects to be
safely introduced for efficiency reasons, and linear logic can model concurrent behavior
cleanly.

This thesis focuses on the derivation of alogic programming language based on lin-

ear (rather than classical) logic. Our hypothesisisthat it ispossibleto derivealogic pro-
gramming languagefromlinear logic. Thislanguage can be effectively implemented and
isan expressive language, allowing updates, concurrency and other idiomsto be cleanly
expressed.

Weinvestigate the systematic derivation of logic programming languagesfromlogics
and proposeataxonomy of “litmustests” which can determinewhether asubset of alogic
can be viewed as alogic programming language. One of the tests developed is applied
in order to derive alogic programming language based on the full multiple conclusion
linear logic. The language is named Lygon.

We derive an efficient set of rulesfor managing resourcesinlinear logic proofsandil-
lustrate how the sel ection of agoal formulacan be made more deterministic using heuris-
tics derived from known properties of linear logic proofs.

Finally weinvestigate programming idiomsin Lygon and present arange of programs
which illustrate the language’s expressiveness.

Acknowledgements

| would like to thank my two supervisors — James Harland and Harald Sgndergaard, for
their support and guidance. Without their fast and accurate proof-reading thisthesiswould
undoubtedly have the odd (additional) inconsistency or two.

The other half of the original Lygon duo, David Pym, has continued to offer com-
ments from afar. | would aso like to thank David for interesting and stimul ating discus-
sion.

In the last few years the Lygon team has grown at RMIT and included a number of
studentswhose work has advanced the cause of Lygon. In particular, the Lygon debugger
[153] isthework of Yi Xiao Xu. Yi Xiao isalso the author of programs 14 and 15.

| would liketo thank an anonymous referee (of apaper based on chapter 4) for point-
ing usto Hodas' thesis and for suggesting an encoding of Lygon in Lalli.

| would like to thank the examiners of thisthesisfor their careful reading and useful
comments. In particular, chapter 3 benefited from the detailed critique provided.

Thank go tothe Australian Research Council, the Collaborative I nformation Technol-
ogy Research Institute, the Centre for Intelligent Decision Systems, the Machine Intelli-
gence Project, the Department of Computer Science and the School of Graduate Studies
for financial support. Thanks also go to the administrative and system support staff at
the Department of Computer Science for providing a working environment and invisi-
bly keeping things working behind the scenes.

Last but not least, | would liketo thank my family: My parentsfor countlesssmall and
many large things, my fiancé, Leanne Veitch, for support above and beyond the call of
duty through the last few weeks, and my sister, Yael, for no apparent reason (she wanted
to be herel).

Thanksto you all!

Vi

Dedication

To the memory of my grandfather, Paul Feher (3.1.1907-8.10.1995).

vii

viii

Contents

1 Introduction

2 Background
21 SequentCaculus.
2.2 IntuitionisticLogic.
23 LinearLogic
24 Permutabilities
25 Linear Logic ProgrammingLanguages

3 Deriving Logic Programming L anguages
3.1 ProblemswithUniformity
3.2 WhatlsLogicProgramming?
3.3 TheSingleConclusonCase
3.3.1 Extending Uniformity to Deal with AtomicGoals
34 Examples
341 PureProlog
342 Lolli
3.5 TheMultipleConclusionedCase
3.5.1 Generdising Uniformity to the Multiple Conclusion Case

3.5.2 AsynchronousUniformity
353 SynchronousUniformity
36 Examples
361 ACL e

5

3.7
3.8
3.9
3.10

311
3.12

Lygon
Applying D4 and DgtoClassical Logic
OtherWork
3.10.1 Proposed Terminology
Re-DerivingLygon
DISCUSSION e

Implementation |ssues

4.1
4.2
4.3
4.4
4.5

TheChalengeof BeingLazy
SouUNdNesS
Completeness
Selectingthe ActiveFormula
DISCUSSION

Applications of Lygon

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8

Lygon - A Programmer’'sPerspective
5.1.1 ThelLygonImplementation
BasicTechniques

Concurrency e
Artificial Intelligence
Meta-Programming
OtherPrograms
DISCUSSION

Comparison to Other Work

6.1
6.2

Linear Logic Programming Languages
Concurrent Programming

107
108
124
141
151
154

157
158
165
168
177
187
199
205
212
220

7 Conclusionsand Further Work 231

7.1 Implementation 232
7.2 NegationasFailureand Aggregates 233
7.3 Other. 234
A Proofsfor Chapter 3 251
A.1 ProofsforSection3.3 251
A.2 ProofsforSection35 258

Xi

Xii

List of Figures

21
22
2.3
24
25
2.6
2.7
2.8

31
3.2
3.3
34
35
3.6
3.7

41

5.1
5.2
5.3
54
5.5

Classical Logic (LK) 7
IntuitionisticLogic(LJ) 8
Multiple Conclusioned Propositional Intuitionistic Sequent Calculus(LIJM) 9
Linear Logic(LL) 10
IntuitionisticLinear Logic(ILL) 11
OneSidedLinearLogic(L£) 13
TheCutRule. 14
Linear Logic Programming Languages 24
Single Conclusion Criteria Definitions 50
Relationshipsfor Single Conclusion Criteria 50
Summary of Single Conclusion Languagesand Criteria 57
Multiple Conclusioned Criteria Definitions 68
Relationshipsfor Multiple Conclusion Criteria 69
Summary of Multiple Conclusioned Languages and Criteria 76
Relationshipsfor Multiple Conclusion Criteria 93
TheFinal System (M) 122
TheLygonUser Interface 167
Graphl 178
Graph2 183
Graph3 185
APetriNet 193

56 FiniteStateMachine L
5.7 Diagramof HammingProcesses

6.1 Linear Logic Based Logic Programming Languages.

Xiv

List of Programs

O© 0 N o 0o A W DN P

NN RNNR R R R R R R B B
W N P O O 0N O o A WOWDN P O

Standard LygonLibrary 166
TogglingState 169
NaiveReverse 170
CollectingLinear Facts 171
CountingClauses 172
Counting Clauses— AlternativeVersion 172
AffineMode 173
State Abstract DataType o 174
StateBased Sum L 174
BatchingOutput 176
PahFinding 179
HamiltonianCycles 181
Topological Sorting 184
BreadthFirstSearch 186
DepthFirstSearch 186
CommunicatingProcesses 188
Mutual Exclusion 190
Chemical Paradigm 190
Linda. 191
ACtOrS 193
Petri Nets 195
Dining Philosophers 198
YadeShooting Problemo oo 201

24
25
26
27
28
29
30
31
32

BlocksWorld 202

Exceptional Reasoning o 204
Lygon Metalnterpreter | 209
Lygon Metalnterpreter Il 210
Adding Rulestothe Metalnterpreter 211
Exceptions 213
Parsing Visual Grammars 216
Hamming SequenceGenerator 218
Bottom Up Computation 219

XVi

Algorithms

1 Trandating M to L proofs
2 Trandating £ to M proofs

XVii

Xviii

Preface

Early work on the implementation of Lygon was reported on at the Australasian Com-
puter Science Conference in 1995 [149]. A (rather abridged) version of chapter 4 ap-
peared at the International Logic Programming Symposium later that year [150]. Some
preliminary work on Lygon programming was presented as a poster at that conference
[58]. Other material on which chapter 5 is based was presented at the 1996 Australasian
Computer Science Conference [152] and at the 1996 conference on Algebraic Method-
ology and Software Technology [60] where the Lygon system was demonstrated [59]. A
preliminary version of chapter 4 appeared as atechnical report [148] asdid an early ver-
sion of chapter 3 [151]. Section 5.1 is based on the Lygon 0.7 reference manual [146].
The reference manual aso contains a section on Lygon programming.
Thisthesisislessthan 100,000 wordsin length, exclusive of tables, bibliographies, foot-
notes and appendices. The work in this thesis has not been published elsewhere, except
as noted above.

Michael Winikoff

Melbourne, Australia, March 1997

XiX

XX

I ntroduction 1

Chapter 1
| ntroduction

Programming languages are the basic tools of computer science. Although from a the-
oretical perspective any (reasonable) programming language is equivalent to any other,
there are many reasons why certain programming notations may be better than others.
The design of a good programming language is a trade-off between factors such as effi-
cient execution, fast compilation, programmer efficiency, tool support, safety!, portabil-
ity and mobility.

Perhapsthe most important and difficult trade-off i s between execution efficiency and
programmer efficiency. Higher level languages reduce the amount of work the program-
mer hasto do; however they have, to date, been |ess efficient than lower level languages.
That lower level languages are necessarily more efficient is a piece of folklore which is
under attack — higher level languages are constantly coming closer to the performance of
the lower level languages. A consequence of this constantly closing performance gap is
that the abstraction level of programming languagesis slowly but inevitably rising. Re-
search on the design, application and implementation of higher level languages yields
ideas which are eventually incorporated into mainstream programming languages?®. Ad-
ditionally, higher level languages are increasingly being applied directly with promising

LOncethiswasdefined as* can programswritten in the language crash the machine?’ . Withtheprolifer-
ation of memory protection the question becomes* doesthe program need to be debugged at the conceptual

level of byte arrays?’.
2|t has been said that the timeit takes for a programming construct to become accepted and move from

an experimental language to amainstream one is twenty years.

2 I ntroduction

results [23, 26, 37, 72, 100, 119, 129].

A class of programming languages which has been described as “very high level” is
declarative programming languages. One definition of the class of declarative program-
ming languages proposed by Lloyd [96, 97] isthat a declarative programming language
equates a program with a theory in a logic and a computation with a deduction in the
logic. A logicis defined as aformal system with

1. A proof theory,

2. A model theory,

3. A soundness theorem, and

4. (hopefully!) a completeness theorem.

There are two major sub-classes of declarative languages: functional programming
languages [74] which are based on Church’s A-calculus, and logic programming lan-
guages [134] which view computation as proof search in alogic. Declarative program-
ming languages are predicated on the assumption that a clean and simple formal seman-
ticsisimportant and useful. Important, sinceit providesan explanation of thelanguageto
programmers, serves as an implementation-neutral contract for implementorsand allows
the collected knowledge of nearly ahundred years of intensive research into mathemat-
ical logic to be leveraged. A simple formal semanticsis also useful in that it simplifies
proofs of correctness and aids in the construction of programming tools. It is no coinci-
dence that powerful programming tools such as partial evaluators, abstract interpreters
and declarative debuggers were first developed for (pure) declarative languages.

Declarative programming languages have a number of benefits when compared to
more traditional programming languages — they are higher level, have ssmple formal
semantics and are easier to reason about and to construct tools for. However they do
suffer from a number of problems. Current implementations are inefficient (although, as
noted above, the performance of these languages is constantly improving [62, 63]) and
understanding the performance of programs written in these languages can occasionally
be difficult. Declarative languages also tend to lack expressivenessin certain areas —
they are not good at expressing I/0O or concurrency for example. Since graphical user

I ntroduction 3

interfaces (GUIs) generally involve concurrent behavior, expressing GUIsin declarative
languagesis still a subject of research.

Girard'slinear logic [46] promises solutionsto some of these problems—linear logic
is capable of modelling updates, it has inspired linear types [33, 143] which enable side
effects to be safely introduced for efficiency reasons and linear logic can model concur-
rent behavior cleanly.

Thisthesisfocuses on the derivation of alogic programming language based on linear
logic. Our hypothesisisthat:

It ispossibleto derivealogic programming languagefromlinear logic. This
language can be effectively implemented and is an expressive language, al-
lowing updates, concurrency and other idioms to be cleanly expressed.

The contributions of thisthesis are threefold:

1. We investigate the systematic derivation of logic programming languages from
logics. We show that logical equivalences which can be proven in alogic do not
necessarily hold in afragment of thelogic (section 3.1). The main contribution of
this part of the thesisisto propose ataxonomy of “litmustests’ which can deter-
mine whether a subset of alogic can be viewed as alogic programming language.
The tests are not specific to linear logic and could be applied to a range of logics
(e.0. modal logic, relevant logic, etc.) Thiswork extends our understanding of the
essence of logic programming. One of the tests developed is applied in order to
derive alogic programming language based on the full multiple conclusion linear
logic. The language is named Lygon.

2. We derive an efficient set of rules for managing resources in linear logic proofs.
These rules are applicable both to the implementation of linear logic programming
languages and to linear logic theorem proving. We a soillustrate how the selection
of agoal formula (when there are multiple formulae in a goal) can be made more
deterministic using heuristics derived from known properties of linear logic proofs.

3. We investigate programming idioms in Lygon and present a range of programs
which illustrate the language’s expressiveness.

4 I ntroduction

4. We compare Lygon to a number of related languages including other logic pro-
gramming languages based on linear logic and concurrent logic programming lan-
guages. We show that Lygon subsumes many of these.

Thethesis beginswith some background (chapter 2). We then investigate the essence
of logic programming and the systematic derivation of logic programming languages
(chapter 3). In chapter 4 we look at the implementation of Lygon and in chapter 5 we
look at the language’s applications and programming methodology. We compare Lygon
to other work in chapter 6 and conclude with adiscussion and abrief ook at further work
(chapter 7).

Chapter 2

Background

2.1 Sequent Calculus

The sequent calculusisaformalism due to Gentzen [45] for representing inferences and
proofs. Itisthe standard notation used in the proof theoretical analysis of logic program-
ming since it distinguishes naturally between programs and goals. Additionally the se-
quent calculus rules construct a proof locally (as opposed to natural deduction [82]) and
allow short direct proofs (as opposed to Hilbert-type systems [82]). This makes the se-
quent calculus appropriate for systematic (and hence automatable) proof search.

A sequentisaconstruct of theformT" = A whereT” and A are sequences of formulae.
I" isthe antecedent and A is the succedent. A sequent is generally read as“ if all of the
[are true then at least one of the A istrue’. Notethat I' and A may be empty. For
example the sequent p, ¢ - p isprovable classically and can be read as “p follows from
the assumptionsp and ¢”.

An inferenceis a construct of the form

I, ... I,

T, L

where L isanameidentifying the inference and the IT are sequents. Theinference should
be read as “ The conclusion I, is derived fromthe premises IT; ... II,”. We shall see
an example shortly.

6 CHAPTER 2. BACKGROUND

Usually for each connective there are two rules - one for the left side and one for the
right. For example the classical logic rulesfor A are

DAFREA o TEAA TERA
TEAFRFAN TFFE AR, A

Rulesthat deal with logical connectives (known aslogical rules) generally leave most of
the formulae unchanged and have a single formulain the conclusion which has its top-
most connective removed and the resulting subformul ae appropriately distributed. The
formulawhich is decomposed (F; A F» above) is known as the principal formula. The
subformulae of the principal formula (F; and F;, above) are known as active or side for-
mulae. The unchanged formulae (I" and A above) are the context.

In addition to the logical rules thereis an axiom rule which states that any atom fol-
lows from its assumption (we use p throughout to denote an atomic formulae such as

append([1],[2],[1,2]) or q(1)):
— Ax
pkp

Note that for any logic F' - F will be derivable for any formula F'. In addition to the
axiomruletherearealso the structural rulesand the cut rule. Thestructural rulesapply to
any formulaand (in classical logic) allow the order of formulaein asequent to be changed
(Exchange), formulae to be deleted! (Weakening) and additional copies of an existing
formula created (Contraction). Often it is convenient to ignore the structural rules by
treating I" as being sets (for classical and intuitionistic logic) and multisets (for linear
logic).

Inference rules are given in figure 2.1 for classical logic, figure 2.2 for intuitionistic
logic and figures 2.4 and 2.5 for linear logic.

In the linear logic sequent calculusrules, therule

T+ F2A
THE7A 1

isapplicableonly if every formulaein the antecedent isof theform !G and every formulae
(other than ! F') in the succedent is of the form ?G.

"When read bottom up — for atop down reading the opposite behavior occurs.

2.1. SEQUENT CALCULUS

Figure 2.1 Classical Logic (LK)

—— axiom
pkp

'-A

RF%AWi

IFFFA

T,F-A cL

IVELGEA

RQF%AEi

I,F,GFA

rrnGra’t

I'FFA TI,GFA

rrvara Ut

T-FEA T,GFA

L
TT.F=GFAAN

T, Flt/z] F A

RWFFAVL

[Fly/z] F A

T,3zF F A oL

I'FFA
T-FFA

T-FEA T,FFA

TEA cut

'=A

FPRAWR

T+FFA

THF A CR

'+ F,G,A

T ER
TFG,FA

T-FA TFG,A

THFAG,A AR
PERGA | o
I'-FVGEA
LEEGA o
'FF—GA
I'F Fly/z], A
[FVaF, A VR
T+ Flt/z], A
T+ 3zF, A IR
LEFA o
TF-FA

Therules V-R and 3-L have the side condition that y isnot freein I, F' or A.

CHAPTER 2. BACKGROUND

Figure 2.2 Intuitionistic Logic (LJ)

—— axiom
pkp

I'EF

— WL
T,FFF

IF,FFF

L
RFFF’C

T, F,G+ F

T - EL
TG, FFF

LEGEF
I FAGFF

IF+FF T,GFF

L
T FEVGrE

T-F T,GFF

T FoGrE ¢

T, F[t/z]+ F

nwkav¢

I, F'ly/x] = F

3L
T, 32F'F F

e F

T~F T,FFG

e cut

I+
rEF R

'-F T'FHG

-R
'-FAG "

' F;

—F— V-R
'k VE,

NFEG

rFroa R

'k Fly/x]

[FVeF VR

[- F[t/x]

- 3zF R

T, FF

~R
[+ —F

Therules V-R and 3-L have the side condition that y isnot freein I", F" or A.

2.1. SEQUENT CALCULUS 9

Figure 2.3 Multiple Conclusioned Propositional Intuitionistic Sequent Calculus (LJM)
[and A are multisets.

T o pA A7 rira+- L
T,F,GFA . TFEA THGA »
T.EAGEA ™ TFFAGA -

I FFA I,GFA . I'-FG A .
TLEVGTFA V™ TFEVGA Y™
ILFGFF I,GFA . IFG -
T F>GFA - TFF > G,A ~
[41] presents a group of ruleswhich replace — —L:

G, FFA . IE— (H—G)FA .
T.FSGFFA ™ T (EANH) - GFA 2
NESGH-GREA - DHoGRESH DLGREA -
I, (EVH)—GFA ’ I, (E—-H) —-GFA !

A proof is a tree where the root is the sequent proven and the leaves are instances
of the axiom rule. As an example consider proving that in classical logic B — ((B —
A) — A) isadwaystrue

BEB Y AFA

B,(B— A)F A
BF(B—A) >4
FB—((B—A) — A)

Az
— L

— R

Note that when used for logic programming the inference rules are applied bottom-
up.2 We apply the inference rules to go from conclusions to premises. We are given a
query and seek to prove or disprove it.

We use left (right) to refer to al rules (both structural and logical) which operate on

2Since proof trees are upside down to a computer scientist “bottom-up” here correspondsto what logic
programmersnormally call “top-down”, i.e. the standard Prolog mechanism.

10

CHAPTER 2. BACKGROUND

Figure2.4 Linear Logic (LL)

—— axiom
pkp
TFEA T, FFA

T rA Ao

LEGIEA
T,G,F,I'F A

THA
r,mAl'L

— 1-L
1+

ROFAOi

THFA

- co= 1
T,FLFA L

I,F,GFA

Bk il el W
TFoGEA "~

IFFA I,GFA

[LF&GFA

I FFrA T,GFA
ILFOGFA

®-L

ILFFA T,GFA
T,T,FsGFA,A

w-L

THFFA TI,GFA
T,I,F -GFA,AN

DFEA
T,)FFA-

I, F A

ek LNl N}
IT,?F F2A

'+A

- -
TN

TR IF A

-
T,IFFA ot

T,Flt/z]F A

FNWFFAVi

I, Fly/z]F A o

T3z, FrA -

wherey isnot freein T, A.

T,FaGFA S

L

THA,FG,A
rkAxLRA'ER

—1-R
F1
r-A

FFLALR

— TR
TFT,A

T,FFA

o = 1.
THFLA R

TFFA T'FG,A

R
T FFaGAAN ©

rFFEA TFGA

rrraGa &R

T-FA THG,A

TFFaG,A TFFadA

PERGA o
TFF9G,A

I,FFG,A

IrF=GAa R

I - F,7A
IT FIF,7A

TFFA,

THF?F A R

A

- ?-
reEa VR

[F2F,7F, A

7R
T F2F, A ¢

L'k Fly/z], A

FFWLEA‘wR

T+ Flt/z], A

TF3z.FA IR

@-R

2.1. SEQUENT CALCULUS

1

Figure 2.5 Intuitionistic Linear Logic (ILL)

—— axiom
pkp
rHFF I ,F+G

cut
I,I'FG .

LEGIUEE
T,G,F,I'FF

THF
r,nFl'L

— 1-L
1+

E— N
N
THF

1
RFLF_-L

PEGEF
[LFoGHF

I,F+F I,GFF

L
[LF&GFF TFaGFrF &

I F-FrF T,GFF

[LFOGFF oL

IF+F T,GF
T,F9GFF

T+-F T.GFF

—o-L
T F—oGFF

I,FFF

RWFF’L

L, FR2F
IT,?F F7F

'kF

WL
TFrF

T,IF\FFF

-
T,)FFF oL

T, F[t/z] - F

FNLFFFVi

I, Fly/z]+ F

[,3z.F+F It

wherey isnot freein T, A.

reT

LFE
L'+ F+

TFF T'FG
TTFFeG

®-R

'kF -G

-R
Trrac &

'rF r-G

IFFaGg TrFag R

I,F- TI,GFF

TFeGrF ot

I,FFG

TFFoG N

THE,

— I-R
' HIF

PEF
T R?F

'k

—F— W7?-R
Fw?F W

'k Fly/z]

TFve F 'R

T+ F[t/q]

Tra..r R

12 CHAPTER 2. BACKGROUND

formulae on the left (right) of theturnstile (F). Therules Az and Cut are neither left nor
right.

A sequent calculusis single conclusioned if there is at most a single formula on the
right of the turnstile, otherwise it is multiple conclusioned. Single conclusioned calculi
do not possess the right contraction and right exchange rules. One of theimportant early
results in the area is that limiting the standard sequent calculus for classical logic to a
single conclusion gives a sequent calculus for intuitionistic logic [45]. Note that there
exists a multiple conclusioned sequent calculus for intuitionistic logic (given in figure
2.3).

A sequent calculusisone sided if all succedents (or all antecedents) are empty. This
can be achieved by shifting formulae across the turnstile by negating them and then using
de Morgan rulesto push negationsinwards. Linear logic wasfirst presented [46] asaone
sided system since there are half as many rulesinvolved.

For example, to construct a one sided sequent calculus for classical logic we can re-
place sequents I + A with sequents —I", A and push negations inwards. The axiom
rule becomes

Fp,—p A

In figure 2.6 a one sided presentation of the rules of linear logicisgiven. The sys-
tem (£) aso introduces a non-linear region (§) which is duplicated by the ® rule. This
makes the ® rule permutable with contraction (see section 2.4). Additionally, the axiom
rule encodes applications of weakening. This system is used as a stepping stone in the
completeness proof of the deterministic resource management rules presented in chapter
4. Showing the equivalence of this system to the standard rulesin figure 2.4 is straight-
forward. Thesequent ¢ : T isprovablein L iff thesequent - T", 76 hasan LL proof.

Two formulae, A and B, are logically equivalent if both A - Band B - A are
provable. For example, in classical logic A — B islogically equivalentto (—A) v B

"

AFA

ArA Ty po
ArA“ Brpdr | AFBAT " BrpAr
A(ASB)FB "4, AFB BAFE |)
A%BPﬂABﬁ_RR AV B, AF B ;

ASBFEAVE Y™ (~A)VBFAB

2.1. SEQUENT CALCULUS

13

Figure 2.6 One Sided Linear Logic (£)

5:p,pLAx ml

0:T
5:T,FT 5:J_,FJ_
o0:F,T 5:G,A® o: F,T' 6:G,T
0: FG,T,A 0: F&G,T
0:F,T & 0:F,G,T
S:FeG, T ! 5:F9G,T
0:G, I o 0 F,
S:FaG,T ° §:IF "
F,(S:F? F,5:F,F?
SFT - Fo.rT D
§: F[t/x],T §: Fly/z],T
0 :dzF, T 0 :VzF, T

wherey isnot freein ', A.

14 CHAPTER 2. BACKGROUND

Figure 2.7 The Cut Rule

TFrA TFEA
TFA Cut

Cut

Thecut rule(figure 2.7%) occupiesaspecia placeinanumber of respects. Itisastructural
rule in that can be applied to any formula. It is neither aleft nor aright rule. Addition-
ally, and most importantly, it isthe only rule (in the logics which we will be considering)
which does not satisfy the sub-formula property. The sub-formula property is satisfied
by a sequent calculus rule if all formulae in the premis(es) of the rule are subformulae
of formulae in the conclusion. The absence of this property for the cut rule is a severe
impediment to bottom-up proof search sinceit requires that we “guess’ the formula F'.

The property of cut elimination statesthat if there exists a proof in some system with
conclusionI" - A which makesuse of the cut rule then there existsanother proof with the
same conclusion which does not make use of the cut rule. The cut elimination theorem
isalso known as Gentzen's Hauptsatz (main theorem) [45]. The cut elimination property
has been shown to hold for all of thelogicswe shall be considering. That cut elimination
holdsis essential for bottom up proof search to be practical.

From cut elimination we can derive a number of useful properties. For example,
modus ponens as a meta-level inference step can be shown to hold using cut. If we have
proofsof - A and A — B then we can derive - B:

: AFA BEB
HFA—-B A A—-BFB

: Cut
FA AFB
-5 Cut

— —L

For more details on the sequent cal culus we refer the reader to [81].

3Note that the rule given in figure 2.7 corresponds to an additive presentation of the cut rule. In linear
logic it is more natural to consider a multiplicative presentation where the formulae in the conclusion are
split between the two premises. In classical and intuitionistic |ogic these two presentations are equival ent.

2.2. INTUITIONISTIC LOGIC 15

2.2 Intuitionistic Logic

Intuitionistic logic was developed early this century. It sharesits syntax with classical
logic but differs semantically inthat it rejectsthe law of the excluded middlewhich states
that = A v —A istrue, i.e, that predicates must be either true or false. A number of
consequences follow, for example although A — ——A, it is not the case that ——A —
A, thus A and ——A are distinct. For our purposes it is sufficient to know that it can
be specified by taking the standard sequent calculus for classical logic and limiting it to
single conclusions. For more details we refer the reader to [81].

2.3 Linear Logic

Linear logicwasintroduced inaseminal 1987 paper by Girard [46] and has sinceinspired
much work in the computer science and mathematical communities.

Whereas classical logic can be said to be based on the intuitive notion of truth, linear
logic isintuitively based on the notion of resources. A predicate in linear logicisare-
source. Resources can neither be duplicated nor discarded. Thusfor examplethe sequent
dollar, dollar I~ dollar which is provable classically does not hold in linear logic.

Linear logic provides connectives that allow controlled duplication and deletion of
resources. Thisaccountsin part for linear logic's richness and versatility.

Asan example consider the familiar resource of pizzaslices. Let us use cap to repre-
sent the resource of asingle slice of capricciosa pizzaand let veg represent asingle slice
of vegetarian pizza.

Resources can be supplied and consumed. These dual notions are entirely symmet-
rical in linear logic. If cap represents the consumption of a slice of pizzathen its linear
negation cap* (“neg cap” or “perp* cap”) denotes the act of supplying aslice of pizza.

Dueto thelinearity of resourcesthefamiliar conjunction and disunctionare splitinto
two connectives each. There are two conjunctions: a ® b (“*acrossb” or sometimes due
to the visual appearance of the connective “a pizzab”) splits the resources between the
sub-proofsof a and b. a &b (“awithb”) usesal of the resourcesto provea and al of the

“from “perpendicular” - at right angles

16 CHAPTER 2. BACKGROUND

resourcesto proveb. Thereareasotwo digunctions. a®b (“aor b”) hasafairly standard
intuitive behaviour —it is provableif either ¢ or b are. a2 b (*apar b” or “atensum b”)
isthe dua of ®. It places both a and b into the context. If one thinks as ® as enabling
multipleconsumptionsby splitting the resources between a and b then e enablesmultiple
supplies.

Linear logic has four logical constants:

T: Isaversionof truthwhichisprovableinany context. Itistheunitof & (i.e., T&F =
F)

1. Isprovable, but only in an empty context. It isthe unit of ®.
1: Istheunit of 2. It cannot be proved, but can be weakened away.
0: Istheunit of .

The formula

(veg ® veg ® veg ® veg) @ (veg ® veg ® Veg)

expresses the consumption of either three or four slices of vegetarian pizza. Using the
constant 1 this could also be written as

veg ® veg ® veg ® (veg @ 1)

The constant T can consume any amount of resources:

-
- T, veg, cap’, cap

The two exponentials “!” and “?’ represent different notions of infinite resources. “?’
represents a possibility for endless resources. ?veg (“why not veg”) can be interpreted
as someonewho is content with any number of vegetarian pizzasincluding zero. Onthe
other hand !veg (“bang veg” or “ of courseveg”) represents someonewhoisonly happy if
given an infinite number of vegetarian pizzas. Conversely, ?(veg') is arestaurant capa-
ble of producing any number of vegetarian pizzas and ! (capt) isastrange establishment
that insists on feeding its customers with an infinite amount of capricciosa pizzal

2.3. LINEARLOGIC 17

A certain very hungry person is happy only if given an infinite amount of pizzas but
isnot fussy about which type they are. We can represent this person using the following
formula:

I(veg & cap)

Thefollowing formularepresents an infinitary supply of vegetarian pizzas.
?(veg™)

Using the rules in figure 2.4 we can prove that an infinite supply of vegetarian pizzas

satisfies very hungry:
veg - veg ‘% L g

- veg',veg
~7(veg'),veg
F?(veg'), vegd cap -

=7 (vegh), !(veg @ cap)

The quantifiers are written as they are in classical logic and behave identically.
Linear logic possesses the following de Morgan rules:

(Fy ® Fo)t = (F)" % (Fy)*
(Fi8 Fp)t = (F)" @ ()"
(1@ F)* = (F)* & ()"
(F1 & Fp)t = (F)*" @ (F)*
(IF)L = 2(F)*
(?F)-=(F)*
3z F)t =Vz(F)*
(Vo F)t = 3z (F)*
(Dt=1L
(L)t =1
0)t=T
(T)+=0

Good tutorial introductions to linear logic and its applications to computer science
can befoundin[3,4,123,124].

18 CHAPTER 2. BACKGROUND

2.4 Permutabilities

Permutabilities[83] play an important rolein the proof theoretical analysis of logic pro-
gramming languages. We say that (e.g.) ®-R permutes down over &-L if whenever a
proof contains an occurrence of ®-R immediately above® an occurrence of &-L we can
swap the order and retain avalid proof. For examplein any context, the inference

TR FAF T'FAF,
T T, FFA AN FoF,
T T, F &b AN FoF,

- R
&— L

can be replaced by

[,F F A F . :
T R&RBEARS Y I'EALR
TR &R AN ok,

- R

S0, ®-R doesindeed permute down over &-L. Alternatively, &-L permutesup over ®-R.

In the case where the two rules in question are both right or both left rules we need
to modify the definition slightly. Where the upper rule operates on a formula which is
introduced by the bottom rule permuting therulesisimpossible. We modify thedefinition
to exclude this situation when testing for permutability. For example in the following
proof we cannot exchange the order of ® — R and & — R; however they do permute over
each other when @ is not in a sub-formula of ®.

H+-H
FHF H-FGoH

FH+F®(GoH)

®R
QR

By “above’ we mean “closer to the leaves’

2.4. PERMUTABILITIES 19

As a negative example consider ®-R and &-R. The following proof is derivable

. FEFY . gro™
GrT ' FFRL_- FFT' GrGL_
FGrFleT %27 FGrGLeT ©

FGFF&G, L®T

Consider now a proof of the same sequent which begins with an application of ®-R. It
is clear that the formula F' & G will have to go to the branch containing L since none
of 1L ,F+1,GF LorF,GF 1 areprovable. Unfortunately, neither are any of
FF&G, LorF-F&G,LorF,GF F&G, L. Thusthereisno proof of the sequent
which begins by applying ®-R and hence ®-R does not permute down over &-R.

A ruleisreversible (the term invertible is a'so sometimes used) if it permutes down
over al other rules and relatively reversible if it permutes down over al the rules that
can occur in the fragment being considered, but not necessarily over al of therules. For
example, inlinear logictheright rulefor '@ isreversible. Theright rulefor @ isrelatively
reversibleif the proof cannot contain &-R (or the equivalent &-L).

A connective is asynchronous [6] if the corresponding right rule isreversible and is
relatively asynchronousif the corresponding right ruleisrelatively reversible. Non asyn-
chronous connectives are referred to as synchronous. A connective occurring on the | eft
of theturnstileissynchronous (respectively, asynchronous) iff it isasynchronous (respec-
tively, synchronous) on the right of the turnstile.

If there is a proof of a sequent containing a formula whose topmost connective is
asynchronousthen thereisaproof of the sequent wherethat formulaistheactiveformula.

As an example, consider the proof (on theleft) of (a(1)" »® L), Iza(z). Since is
asynchronous there exists a proof (on the right) where the first inference applied is 9.

———— Ar ————— Az

Fa(l),a(l) N Fa(l),a(l)
Fa(1)h, L, a(1) - - a(1)", Jza(z)
Fa(1)t e L, a(l) -a(1), L, 3za(z)

Fa(1)" ® L, 3za(x) Fa(1) e L, Jza(x)

20 CHAPTER 2. BACKGROUND

In linear logic, the connectives T , L, %% &, 7 and V are asynchronous and the
connectives1,0,® , @, ! and 3 are synchronous.

In[6] Andreoli observesthat if thereisaproof which beginsby applying asynchronous
rule and aside formulaisitself synchronous then there exists a proof of the resulting se-
quent if and only if there is a proof which begins by applying arule to the synchronous
side formula. This property is known as focusing. Note that an atom on the left of the
turnstile can be considered to be synchronous with respect to focusing.

Thepermutability propertiesfor classical andintuitionisticlogic below arefrom Kleene
[83]. The permutability properties for linear logic are from Lincoln [94]. Most of the
pairs of inference rules permute for classical and intuitionistic logic. The exceptions are
outlined below.

Classical Logic
The only pairs of rules which do not commuteinvolve 3 and V.
1. V— L aboveV — R : Vap(x) - Yap(z)
2.V — Laboved — L: VYap(zx), Jz—p(x)
3. 3— Raboved — L: Jxp(z) - Jxp(z)
4. 3— RaboveV — R: I Jxp(x), Ve—p(x)
5 3— RaboveV — L: p(a) V p(b) F Jzp(x)
6. V— LaboveV — L: V-p(x),p(l)Vp2)

These can be summarisedin atablewhereanumber meansthat theruleinthat column
cannot be permuted below the rule of the row. For example, in the following table, the
occurrence of 5 indicates that 3 — R cannot be permuted down past vV — L.

6ANd —o

2.4. PERMUTABILITIES 21

V-L|3-R
V—-L 5
V—-R 4
J—-L 3

Ruleswhich do not appear as a column heading can always be permuted down. Rules
which do not appear as row headings can always be permuted up. Rules which do not
appear at al can be permuted arbitrarily.

Uniformity requires that right rules can be permuted down past |€eft rules. Thus for
the purposes of uniformity the problematic cases are those where aright rule above aleft
rule does not permute. For classical logic only the third and fifth cases above present a
problem to uniformity. Intuitively, we can conclude that alogic programming language
based on the application of uniformity to classical logic cannot allow the application of
bothd — Rand 3 — L or of bothd — Rand Vv — L.

I ntuitionistic Logic

Thefollowing pairs of rules do not commute:
1. V— L aboveV — R : Vap(z) - Vap(z)
2.V — Laboved — L: VYap(zx), Jz—p(x)
3. 3— Raboved — L: Jzp(z) - Jzp(x)
4. - —Labove— —R:p—pkp—q
5. - — Labove— —R:-pkp—q
6. - —Labove~—R:p— —pk-p
7. - —Labove—~—R:-pk —(pAp)

8. — —Labovev —-L:pVqgp—qtqg

22

CHAPTER 2. BACKGROUND

9.V—RaboveVv —-L:pVqgkpVyg

10. - — LaboveVv —L:pVq,—ptq

11. 3— RaboveV — L: p(a) V p(b) - Jzp(x)

12. V— L aboveV — L : Y=p(x),p(1) V p(2)

These can be summarised in atablewhereanumber meansthat therulein that column
cannot be permuted below therule of therow. Notethat sinceintuitionisticlogicissingle
conclusioned it is not possible to have two consecutive right rules where the upper rule
does not operate on a side formula of the lower rule. Hence al pairs of right rules are
automatically not candidates for permutability and we mark them as N/A.

V-R|V-L|3d-R|—=—-L|—-—-1L
V—L 9 12 11 8 10
V—R | NA N/A
Jd-L 3
——R | N/A N/A
-—R | NA N/A 6 7

Ruleswhich do not appear as acolumn heading can always be permuted down. Rules
which do not appear as row headings can always be permuted up. Rules which do not
appear at al can be permuted arbitrarily.

Linear Logic

Linear logic has moreimpermutabilitiesthan either classical or intuitionisticlogic. Inthe
following table (taken from Lincoln’s thesis [94]) a number means that the right rule of
the connectivein that column cannot be permuted bel ow therule of therow. For example,
the entry 1 indicates that ® does not permute down past ’e:

C 4 aLl AT

- B, Bt

- A, B, At @ Bt

A% B, At ® B+

Azx

- A% B,At Bt

A% B, At ® B+

2.5. LINEAR LOGIC PROGRAMMING LANGUAGES 23

Thetableonly summarisesright rules (and omits1and T sincethey have no premises).
To obtain the permutability properties for |eft rules use the de Morgan dual. For exam-
ple, theleft 2 rule permutability properties are identical to theright ® rule. Ruleswhich
do not appear as a column heading can aways be permuted down. Rules which do not
appear asrow headings can always be permuted up. Ruleswhich do not appear at all can
be permuted arbitrarily. The !-R rule requires that there be no linear formulae and thus
it does not permute with any rule not involving ? since the presence of aformulawith a
topmost connective other than 7 preventsthe ! rule from being applicable. For example,
thesequent - (7p) & (?q), !1isprovablebut the! ruleis not applicable before the & rule.

Q|@ W 7|3 various examples

- (A% B), (At @ BY)
F(A&B),(L®T),A+ B+
- (A& B), (At ® BY)

- (1& A), A+

F((1A) & A),7A*

F(A@®)* & A(w)b), 3o Alz)
F7A, (At @ AL)

H(At @ B),7A

= Vy.(A(y) ® B),3z. A(z)*

D || |I|Q
olo|lo|o

~~ I~

9
Q
~J

© 0 N O U e W N = O

W | << |
o
Ne)

2.5 Linear Logic Programming L anguages

A linear logic programming language can be defined by giving a set of allowed pro-
gram and goal formulae. Grammars defining the classes of goal and program formulae
for anumber of linear logic programming languages can be found in figure 2.8.

The semanticsof alinear logic programming language can be obtai ned using the stan-
dard linear logic sequent calculus inference rules. However, a more deterministic set of
rulesisgeneraly possible. For example, if alanguage requiresthat all program formulae
areof theform IVz(G — A) thenthefollowing ruleisasound and compl ete replacement

24 CHAPTER 2. BACKGROUND

Figure 2.8 Linear Logic Programming Languages

Lolli [70]

Du:=T|A|D&D|G—-D|G=D|Ve.D
Gu=T|A|G&G|D—-G|D=7G|Vz.G|G®G|1|G®G|G|TzG

ACL [85]
D :=IVZ(G — A,)
gi::J—|T|Am|?Am|Ap|g>?g|g&g|vxg|7—\’,
R:u=3T(AL ®...0 AL ®G) IR®R
LO [10]

D:=VT(G—oA17%...%A,)
Gu=A|T|G&G|G®G

Forum [109]
D:=g
G:=A1G%90|G&G|G—G|G=G|T|L|Vsg

L£C [140]

D:=VT(G—-A17%...%A,)
Gu=A|1loL|T|G®G|GaG |G

Lygon [122]

Du=A|1|L|D&D|DQD|G—-A|G|VaD|'D|D®D
Gu=A|1|L|T|G®G|G0G|G9G|G&G|D—G|D|VzG|IzG |'G |?G

2.5. LINEAR LOGIC PROGRAMMING LANGUAGES 25

for the axiom and left rules;

I, VZ(G — A') - G[F/7], A
T,VZ(G — A FAA Y

where A'[t /7] = A.

A more detailed introduction to the individual languages, as well as a comparison
between them, can be found in section 6.1. A more detailed introduction to Lygon as
a programming language can be found in section 5.1. Note that the grammar given in
figure 2.8 for Lygon isthe one developed in [122]. In section 3.11 we derive a different
version of the language (which we called Lygon,) which we propose as a replacement
for the earlier language design.

26

CHAPTER 2. BACKGROUND

27

Chapter 3

Deriving L ogic Programming
L anguages

This chapter is concerned with the derivation of logic programming languages from log-
ics. The basic motivation is one of language design: given alogic, how should we go
about creating alogic programming language based upon the logic? In investigating the
question we need to take a close look at what logic programming is and how logic pro-
gramming differs from, say, theorem proving, to which it is closely related.

In order to derivelogic programming languages we need to have anotion of acharac-
teriser. A characteriser issimply atest that tells us whether a set of permissible program
and goal formulae constitutes a logic programming language. The derivation of logic
programming languages can be reduced to the search for properties of proofswhich can
be used as characterisers and which capture the essence of logic programming. In this
chapter we investigate a number of properties of proofs which capture various intuitions
regarding the essence of logic programming.

Consider as an example logic programming in classical logic. It iswell known that
the Horn clause fragment of thelogic formsalogic programming language (namely pure
Prolog [134]). On the other hand, allowing arbitrary classical logic formulae as goals
and programs does not result in alogic programming language since the resulting proof
system lacks a number of desirable properties associated with logic programming. One
such property istheability of the system to return appropriate valuesfor variables. When

28 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

weask agoal suchaspl us(1, 3, X) weexpect thesystemto reply with X=4 rather than
withyes.

The ability of the system to do thisrelies on the property that aquery of theform 3z F
isprovableif and onlyif thereisaterm¢ suchthat F'[t/x] isprovable. Thisproperty holds
for theHorn clauselogic fragment but not for thefull logic. For example, thegoa Jxp(x)
is provable from the program p(a) V p(b); however, neither p(a) nor p(b) are provable
from the program.

One property which seems essential to our intuition of what constitutes logic pro-
gramming is goal directedness. Uniformity [112] is aformalisation of the intuitive no-
tion of goal-directedness. The sequent I' - A is seen as comprising aprogram I" and a
goa A. A proof isgoal directed if its“shape” —that isthe choice of ruleto be applied at
each step in the derivation of aproof —isdetermined by the goal and not by the program.

DEFINITION 1 (UNIFORMITY [112])

A proof in the intuitionistic sequent calculus isuniform if each occurrence of a sequent
whose succedent contains a non-atomic formula is the conclusion of the inference rule
which introduces its [the non-atomic formula s| top-level connective.

For example, a proof of the sequent I' - a A ¢ isnon-uniform if it begins with arule
other than A — R. The proof isuniformif it beginswith A — R and if all sequentsin the
proof satisfy the uniformity condition. Thefirst of the following proofs (in intuitionistic
logic) is uniform, but the second is not:

bbb aba

s bEba W b,am”V/V
c,a b a c,bkb,a ¢,b,ala ck e
c,a,b—ata c,b,b—>a|—av I c,b—alkc
c,aVbb—ala c,a\/b,b—>a|—c/\ R
c,aVbb—ataAc
bED ata
-V W w
_aFa _cke brab bal a _cke
a,b—alta c,b—>abkc c,bkFa,b c,bala c,b—alc
c,a,b—)al—aW c,a,b—)al—cW R c,b,b—alka - c,b,b—)al—cW R
c,a,b—akalc A= c,bbb—ataAlc A=

c,aVbb—akaAc v-1L

29

Miller et a. [112] define anidealised abstract interpreter -, which correspondsto the
operational viewpoint. Thisis linked to logic through the definition of a uniform proof.
They then define an abstract logic programming language as atriple < D, G, > such
that for any P afinite subset of D, andforany GinGg, P - G ifandonly if P — G
has a uniform proof.

Unfortunately uniformity is defined in the context of single conclusioned sequent cal-
culi systems. Thisisaproblem since we are interested in ageneral criteria applicableto
arange of both single and multiple conclusion logicsincluding relevant logic [24], tem-
poral and modal logics [118] and linear logic [6, 10, 70, 85, 109, 140, 147].

Thischapter continuestheinvestigation into the derivation of logic programming lan-
guages. We define anumber of formal characterisers (including uniformity) and explore
the relationships amongst them. We begin with single conclusion logics and then gener-
alise to the multiple conclusion setting.

Uniformity turns out to subsume most of the characterisers we investigate which is
evidencethat it istheright direction. We find however, that it is necessary to introduce a
mechanism by which we can determine whether aproof is being guided by atomic goals.
Thismechanism is crucial to the proper generalisation of uniformity to multiple conclu-
sion logics which yields two versions of uniformity. We propose these and an extended
version of the singleconclusion case as characterisersfor the derivation of logic program-
ming languages.

We begin by discussing the problems with uniformity and the pitfalls that arise in
the use of logical equivalence (section 3.1). After discussing some intuitions about the
essence of logic programming (section 3.2) we examine the single conclusion case (sec-
tion 3.3) and look at some examples (section 3.4). We examine the multiple conclusion
case (section 3.5) and look at some more examples (section 3.6). In particular, we ook
at Forum (section 3.7) and Lygon (section 3.8) and how they are judged by the various
criteriapresented. After applying our criteriato classical logic (section 3.9) we compare
our work with other related work in section 3.10. We then re-derive the language Lygon
inlight of our results (section 3.11) and finish with a(single) conclusion and a brief 1ook
at further work.

30 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Two items of terminology we shall use are open nodes and proof steps. Both of these
relate to the process of proof construction. The process of proof search (asused in logic
programming) beginswith asingle sequent at the root of the proof and progressively ex-
pands the proof upwards by applying inferences. The first inference applied has the root
of the tree as its conclusion. At each step of the proof construction process there are a
number of sequentswhich still need to be proved; these are open nodes. For example, in
the following incomplete (intuitionistic logic) proof the sequentsp -pV gandp,pF p
are both open nodes.

prAx pr\/q/_R p,ptp
Al ZSCAT VN pApPEp

Fp— (pA(pVa) F(pAp) —p
= @APVa))A(pAp) —p)

N—1L
— —R
AN—R

A proof step isthe extension of anincompl ete proof by the consecutive application of one
or more inference rules. By “consecutive” we mean that the conclusion of an inference
stepisapremise of an earlier inference in the proof step. Intuitively aproof step extends
a single open node with a number of inferences.

3.1 Problemswith Unifor mity

Uniformity isthe main existing method for characterising logic programming languages.
Unfortunately, it suffers from a number of problems.

Firstly, uniformity isonly defined for single conclusion sequent systems'. A straight-
forward extension to a multiple conclusion setting is fairly obvious [55, 106, 109, 140]
but it requiresthat all connectives occurring in goals permute over each other —arestric-
tion which we shall seeis unnecessary.

Another problem with a simple generalisation of uniformity to multiple conclusion
sequent systems involves one sided presentations. Most? multiple conclusion presenta-
tions of alogic can be smply transformed into a one sided presentation. The problem

'From[112]: “A C-proof in which each sequent occurrence has asingleton set for its succedent is also

called an I-proof”. And later: “A uniform proof is an |-proof in which... ”
2sufficient de Morgan rules are required.

3.1. PROBLEMSWITH UNIFORMITY 31

with one sided presentationsisthat they blur the distinction between programs and goals
and thus cause problemswith the application of uniformity. For example consider theone
sided presentation derived by replacing the sequent I' - A with the sequent T, (—A) -
using de Morgan rules to push negation inwards to atoms and adding the following rule

Az’
p,—pE

Note that thisrule is derivable:
— Az
pEp T
p,op

L

Since proofs in the given one-sided presentation do not contain any goals, all proofs are
trivially uniform! As adirect consequence, the entire logic is trivially considered to be
alogic programming language by uniformity.

Unlesswe are careful with transforming the presentation of thelogic it becomes easy
to conclude that uniformity considers the full logic of most multiple conclusion logics
(including classical and linear) to be alogic programming language.

The conclusion that may be drawn from thisis that only “sensible” presentations of
logics should be considered. At aminimum, a sensible presentation requires that the no-
tion of agoal and a program be present.

Note that having an empty program and a number of goalsis a perfectly reasonable
special casein atwo sided presentation which we should expect acharacteriser to handle.

Thisisaspecia case of the second problem with uniformity —itisreliant on apartic-
ular formulation of intuitionistic logic. Thisisagenera problem —if we judge whether
afragment of alogic constitutes alogic programming language by looking at proofs and
seeing if they have a certain property (such as uniformity) then changes in the system
which isused to construct these proofs can effect the properties of the proofs. Asa con-
sequence, changing the presentation of alogic can change the class of formulae which
are considered to be alogic programming language.

For example, inintuitionistic logic, program formulae of theform £ v F; are gener-
ally not permitted since the sequent p v ¢ F p V ¢ is provable but thereis no proof which
concludes with an application of the standard vV — R rule. However, if we replace the

32 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

standard V — R rule with therule:

T+ EL By, A
TFEVE,A

- R

and modify therest of the calculus accordingly (see[41]) then the sequent has auniform
proof and programs can contain top-level disjunctions.

Thirdly, uniformity does not constrain the search for the proof of a sequent with
(only) atomic goals. Thisis a problem in that a uniform proof search mechanism must
apply the appropriate right rule while the goal is compound but can do amost anything
once the goal becomes atomic. An examplewherethis can lead to undesirable behaviour
isin the proof of ¢, ~¢ = Jxp(z). This sequent is provable; however the proof weakens
away p(x) —sothe goal isirrelevant to the proof. Aswe shall see this problem needs
to befixed in order for one of the two multiple conclusion generalisations of uniformity
to work.

Finally, uniformity possesses aloophole. This allows designs to satisfy the letter of
therulebut violateits spirit. We devotetherest of thissection to thisproblem. Itisworth
stressing that this problem lies in the application of uniformity and not in uniformity
itself.

Abusing Logical Equivalence

Recall that two formulae F and G are logically equivaent if each impliesthe other, that
is, if wecan proveboth F - G and G - F'. Giventhat F' and GG are logically equivalent
we can use the cut rule to replace F' with GG in aderivation and vice versa:

FFG THAF GFF TFAG
TFAaG cu TEAF

Cut

Since the cut rule is eliminable one concludesthat F' and G can be freely substituted for
one another.

What has this to do with uniformity? The careless use of logical equivalence argu-
ments allows for aloopholein the characterisation of logic programming languages. We

3.1. PROBLEMSWITH UNIFORMITY 33

can (ab)uselogical equivalenceto designlanguageswhich areuniforminletter but which
violate a number of properties generally associated with goal directed proofs and logic
programming.

Note that, as an extreme case, the application of standard linear logical equivalences
enables one to encode the entirety of linear logic into a subset that can be shown to be
uniform[6, 109]. Sincefull linear logicisnot uniform thissuggeststhat the use of |ogical
equivalences to extend alogic programming language might not always be appropriate.
To seethat full linear logicisnot uniform consider the sequent p&®q - p® . The sequent
is provable; however the only possible proof uses aleft rule when the goal isnon-atomic
and thus the proof is not uniform. Hence limiting ourselves to considering only uniform
proofsis not complete for thefull linear logic.

The argument to watch out for is “ these two formulae are logically equivalent and
hence can replace each other” . The point is that this only holdsin the full logic. If the
proof system we are working within is alimited version of the full one, then it may be
incapable of proving that F' - G and hence incapable of performing the replacement.
Thus in the context of uniformity the argument above is not valid if we can not derive
F F G inauniformway. Indeed, the proof system may be able to differentiate between
“logically equivalent” F and G.

For example, it is easy to show that the two formulaep & ¢ and (p* @ ¢+) — L are
logically equivalent. However the equivalence proof is not goal directed, and hence we
cannot replace thefirst by the second in agoal directed proof. Given the program p & ¢
only thefirst has a proof which we would intuitively consider to be “goal directed”:

pEp a0
p>p — | p&qbq~
1L —— =1L L — =L
p&q,p- I P &q,q k@_L
prAx I q%qAx . p&q,pt®qt L p
p&qi—p&_ p&ql—qi:R p&q,pr-®qtF L R
pP&qEp&q p&qF (pr®qgt) — L

The second proof isuniform, but it is clearly less“goal directed” than thefirst. This
indicatesthat uniformity isnot constraining enough. Ancther, more compelling, example

34 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

isthe logical equivalence of Jzp(x) and (Y (p(x)")) "

W ol) T, O
pw.p) Frw)) S
p(y), Yo (p(x)") - -7 - py) ", 3ep(x) v_ R
Jap(x), Va(p(r)™) - 1 p = Va(p(x)"), Jup(x) i

Ap(n) - (Ya(p(x)") (Va(p(x)")" - 3ap(v)

The second proof is not uniform. Moreover there does not exist a uniform proof of the
sequent. Attemptsto use thislogical equivaence in a programming language can cause
problems.

For example, consider the Forum[106, 109] fragment of linear logic. Aswill bedis-
cussed in section 3.7, Forum was designed using amultiple conclusion extension of Uni-
formity. However, for anumber of reasonsthe languageisviewed more asaspecification
language and less as alogic programming language. Forum makes extensive use of logi-
cal equivalenceto encode thewhole of linear logicinto afragment of thelogic which can
be argued to be uniform. For example, in Forum there is no 3 connective. It is defined
using the equivalence

JF = (VaFt)"

Unfortunately, there is a difference between these two formulae. If we are told that the
proof system is complete for uniform proofs then we can deduce that I' - Jx F' is prov-
ableif and only if ' - F[t/x] is provable for some term ¢. By encoding the existential
quantifier as a doubly negated universal quantifier this property islost.

For example, consider the following (legal) Forum program

((pla) — L) & (p(b) — L)) — L

which we shall denote by P. The user now asks whether Jzp(x) holds. The system re-
places the query with the logically equivalent? formula:

(Va(p(r) —o 1)) — L

3F+isencodedas F — L in Forum

3.1. PROBLEMSWITH UNIFORMITY 35

The proof below is the only one (modulo trivial permutabilities). Note that no single
valuefor x can be extracted from it.

rt-t ()kp<>Ax_L I L O R
@ o) — D PO, 00—~
pla), (Va(p(a) — D) - p00), (Va(pla) — L))
p(@), (olp@) = D) F L p0), (alp(e) = D) F L
L, @~ D p@ =L Va(p(e) — L) p(b) - L
ir Valp() = - (@) = D&l =1
P, (Va(p(x) — 1))

L

wi(>w¢»FL .

P+ (Va(p(z) —= 1)) = L

Although this proof may appear complex, it actually represents the Forum encoding
of the simpler (and non-uniform!) proof:

P@ T p@ T) am)
p(a) = 3xp(x) = p(b) - Jup(w)
p(a) @ p(b) F 3zp(z)

The Forum implementation* actually loops when given the above program and goal.

In summary, it may beinvalid to apply logical equivalences to alogic programming
language. If the equivalence can not be proven by the limited notion of proof used by the
language then the application of the equivalenceislikely to violate desirable properties
of the language.

More generally, when a characteriser is fed with a set of valid goals (G) and a set of
valid program formulae (D) for alogic and answers “yes, thisis alogic programming
language”, then G and D can be considered to be alogic programming language. How-
ever, the use of logical equivalencesto extend, say, G to G’ isnot necessarily valid. That
G’ can be pre-processed into G using logical equivalences doesnot meanthat G’ isalogic
programming language. As an analogy, we do not consider Cto be alogic programming
language even though logic programming languages can be transformed into it. Thein-
tuition here is that when debugging and programming in C we need to think at its level,

“tp://ftp.cs. hnt. edu/ pub/ hodas/ Forum forumtar. Z

36 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

we cannot think at the higher level since the behaviour of the program can violate the
high level semantics.

The essential point isthat the level at which the programmer visualises what the pro-
gramisdoingisimportant. An encoding isvalidif the programmer can work completely
at the original un-encoded level. We shall return to thisissuein section 3.12.

Thus, to summarise this section, uniformity suffers from anumber of problems:

e |tisdefined for single conclusion systems. Furthermore, the obvious extensionsto
multiple conclusioned systems suffer from problems.

e Uniformity isreliant on a particular presentation of the logic — changesto the pre-
sentation can affect the resulting logic programming language.

e It does not constrain the proof of sequents with atomic goals.

e It allowsfor the abuse of logical equivalence.

3.2 What IsLogic Programming?

In our search for alternatives to uniformity as a characteriser of logic programming lan-
guages our ultimate goal is aformal characteriser appropriate for a multiple conclusion
setting.

Before we can begin working with formal definitions however, we need to have an
informal notion of what constitutesalogic programming language. What isthe essential
difference (or differences) between alogic programming language implementation and
atheorem prover?

We fedl that one of the key differences relates to the notion of auditing. When apro-
gram fails to work it is a problem to be resolved by the programmer (not the language
implementor). In order to debug the program the programmer needs to be able to audit
the execution, that isto be able to ask “how was this derived?’ and get a useful answer.
With atheorem prover there is no guarantee that the system will be able to explain to a
user how the answer was derived. On the other hand one of the defining characteristics

3.2. WHAT ISLOGIC PROGRAMMING? 37

of alogic programming language is that there exists a ssmple explanation of the proof
search process.

Note that the audit need not be too detailed. Details can be left out where they are
irrelevant. Detailsareirrelevant when we can trust the system to never fail. For example,
consider register allocationin high level languages. and garbage collection. Inboth cases
we have enough faith in the technology to leave it entirely up to the implementation.

We now proceed to examine several informal notions of what makesalogic program-
ming language. These notions will be formalised in later sections. There are a number
of propertiesthat are generally associated with logic programming:

1. Active goals, passive programs
Thefirst basic intuition we have is that there is afundamental difference between
aprogram and agoal. The goal is“active” whereas the program is “ passive” and
provides a context within which the goal executes. A dightly stronger intuitionis
summarised by the slogan:

2. Connectives asInstructions
Thisslogan suggeststhat we view thelogical connectives asinstructionsthat when
executed result in the appropriate proof search steps being carried out. With this
intuition we can think of a goal as athread of control and a program as a set of
procedures.

3. Answer substitutions
In logic programming an important role is played by logical variables. When we
ask aquery suchasfactori al (4, X) we expect not only that the system say
yes but also that it provide us with the binding X = 24. Aswe have seen this
property is not generally satisfied by proof systems.

4. The operational behaviour should be simple
Thisisrelated to the notion of auditing. The proof search process should be simple
and understandable. Notethat we do not insist that the detail ed operational seman-
ticsbe ssmplebut rather that at a suitable level of abstraction the proof search pro-
cessissimple. In many logic programming languages, features such as constraint

38 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

solving, co-routining and lazy resource allocation make the detailed proof search
mechanism rather complex. In al of these cases however, there is an appropriate
level of abstraction where the proof search mechanism becomes simple. We shall
return to thisissuein section 3.12.

5. Thelanguage should be efficient

Thisis certainly desirable but is not a useful guideline for determining what is a
logic programming language. The basic problem with using efficiency as aguide-
line is that certain inference rules may appear to be intractable but may actually
have an efficient implementation. An obvious example is the use of logical vari-
ablesand unification to delay the choice of aterminthed— R andV — L rules. An-
other exampleisthe handling of the ® — R rulein linear logic based programming
languages [70, 150] (see a so chapter 4). An additional problem with the use of ef-
ficiency asacharacteriser isthat the vast majority of logic programming languages
and systems omit the occur check. Thisyields efficiency but costs soundness.

We formalise some of these intuitionsin the simpler single conclusioned setting be-
fore proceeding to the multiple conclusioned setting. Section 3.3 covers the single con-
clusioned case and section 3.5 the multiple conclusioned case. In each of thetwo sections
wewill present a series of possible characterisersinterspersed with discussion, examples
and comments on the relationship between the characterisations.

3.3 TheSingle Conclusion Case

In this section we formalise the notion of what constitutesalogic programming language.
In our presentation we strive to be general. We shall mostly assume only that the logic
in question has a cut-€limination theorem?®.

A criterion isaformalisation of the (informal) notion of a characteriser. A criterion
is (usualy) a limitation on the structure of proofs. A subset of the logic is deemed a
programming language by a given criterion if the application of the criterion preserves
completeness, that is, if a proof search mechanism limited by the criterion can prove all

5% A logic without cut-elimination is like a car without enging” [47]

3.3. THE SINGLE CONCLUSION CASE 39

consequences for the subset of the logic. For example, the Horn clause subset of intu-
itionistic logic is complete under uniformity and is deemed to be a logic programming
language by the uniformity criterion.

Wewritel -, F'toindicatethat thesequent " - F'isprovableand canbeprovenina
way which satisfies criterion z. Weview D and G as (generally infinite) sets of formulae
in order to ssimplify the notation. I and A are finite throughout.

DEFINITION 2 (CRITERION)

A criterion isadecision procedure which takesasequent " - F' and returnstrue or false.
We writel +, F to indicate that the sequent " - F' is assigned true by criterion x. We
require that criteria be sound, that is, if I' -, F' holdsthenT' - F' must be provable.

Ingenera I' -, F'isdefinedtoholdif I' - F' holdsand thereisaproof which satisfies
some additional constraints. Thistrivially ensures soundness of the criterion.

The next definition is based on the onein [112]. It providesthe link between criteria
and logic programming languages.
DEFINITION 3 (ABSTRACT LOGIC PROGRAMMING LANGUAGE (ALPL))
Let D beaset of legal program formulae, G aset of legal goal formulae andt- somenotion
of provability. Thenthetriple< D, G, > isdeemed to bean abstract | ogic programming
language (AL PL) according to criterion x iff for any finite subset P of D and for any G
inGg

PFG<~—PFH, G

DEFINITION 4
Criterion x isstronger than criterion y (written xz ~ y) if we have that

VI'VE ', F = I'kby F

Letz ~ y. If < D, G, > isdeemedto bean ALPL by criterion x thenit is also deemed
to bean ALPL by criterion y.
We write z - y when z is not stronger than y.

LEMMA 1
~ isapartia order.
Proof: ~ isreflexive, transitive and antisymmetric (obvious). B

40 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

We now proceed to define the various criteria and to investigate the rel ationships be-
tween them. Thisis an exploratory process and (as we shall see) not all of the criteria
defined are useful — some of the criteria (for example criterion A defined below) arein-
sufficient to capture the essence of logic programming. However, for example, criterion
A isnecessary, and the fact that it isimplied by criterion £ (but not by criterion Dyyyon,)
lends weight to the argument that criterion F' is a better test than uniformity.

Our maininterestistobuild up aglobal pictureof therelationship between thevarious
criteria (see figure 3.2) and so the detailed proofs of the (many) propositions are not of
direct interest and we rel egate them to appendix A. The definitions of the various criteria
are summarised in figure 3.1 on page 50.

DEFINITION 5 (CRITERION A)
' -4 F if thereisaproof of I' = F which does not use the contraction-right and
weakening-right rules.

Contraction right and weakening right are respectively therules:

I'EF F,A T A

rreas % Trra

W —R
Their important property isthat they are applicabletoany formula F'. Notethatinasingle
conclusion setting C' — R isnever applicableand W — R has an empty A.

The intuition behind this criterion is that the goals (being in some sense threads of
control) can not be freely cloned and deleted.

In the definition above, the phrase “if thereisaproof” isimportant. A sequent may
have a proof which violates the criterion in question. However, as long as there is aso
another proof which satisfies the criterion we retain completeness since a proof search
process limited by the criterion will still be able to find a proof of the sequent.

When giving examples it is often more illuminating to look at classes of formulae
which are excluded by the criterion. Consider the program p, —p. This program allows
the goa ¢ to be provable. Thisis not desirable in that the goal isirrelevant. The proof
makes essential use of weakening-right and is excluded by criterion A. Thuscriterion A
does not deem the language

D:=A|-A Gg:=A

3.3. THE SINGLE CONCLUSION CASE 41

to bealogic programming language since the sequent p, —p ¢ can only be proved using

W — R:

pr%f_L
p,—pk
= = W —-R
p,pEgq

Criterion A assumesthat thelogic issimilar enough to certain standard logics so that
it possesses the standard structural rules. Linear logic, for example, does not have these
structural rules and hence trivially satisfies this criterion.

DEFINITION 6 (CRITERION B)
['p F if thereexistsaproof of I' = F which does not contain a sub-proof of a sequent
of theform = + for some=.

Thisis based on the intuitive notion that the program is passive — a program without
agoal should not be able to do anything.

An example of alanguagethat does not satisfy criteria B isForum wherethe program
p, (p — L) islega yielding the derivation:

1F pEop

pm%LF%_L

If alinear logic programming language satisfies criterion B then whenever the proof
search process findsitself searching for a proof of a sequent of theformI" = L (or equiv-
alently I') the search can be immediately terminated with failure.

PROPOSITION 2
B~ A

PROPOSITION 3
A+ B

DEFINITION 7 (CRITERION ()
[' ¢ F if thereexistsaproof of I' = F' where al sequents of theformT' - Jx F arethe
conclusion of an gpplication of the 3-right rule.

42 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Thiscriterion excludes systemswhere the notion of aunique answer substitution does
not make sense. Specifically it excludes situations such as p(a) Vv p(b) + Jzp(z) and
Jrp(x) F Jzp(x).

Note that there actually exists a weaker criterion which only insists that a sequent
of theform I" - dxF is the conclusion of the 3-right rule when it occurs at the root of
the proof. Since criterion C' is quite weak — it isimplied by all variants of uniformity —
weakening it further does not appear to be useful.

At first glancewe might expect that C ~~ A sincecriterion C' prohibitstheweakening
of formulae of the form 3x F'. However thisis not sufficient sinceit is possible to apply
the 3 — R rule and then weaken the result.

PROPOSITION 4
C A+ A

PROPOSITION 5
C 4 B

PROPOSITION 6
A4 C,BC

The next criterion is uniformity, introduced in [112]. Uniformity restricts sequents
with non-atomic goalsto be the conclusions of right rules. Thereis some scope for vari-
ation though, as we have a choice as to which right rule. Even for a single conclusion
system thereis till a choice between a structural and alogical right rule.

The wording in [112] requires that a non-atomic goal be the conclusion of the right
rulewhich introducesitstopmost connective—i.e. the appropriatelogical rule. Other pa-
pers (for example[70]) do not specify which right rule. Note that for asingle conclusion
setting with no structural rules (for exampleLolli [69, 70]) thesetwo definitionscoincide.

Our definition of D, alowsfor any right rule to be used and Dy, requires that
the right rule introduce the goal’ s topmost connective.

DEFINITION 8 (CRITERION Dyeqr)
I' Fp,... F ifthereexistsaproof of I' = F where al sequents of the formT" = G (for
non-atomic G) are the conclusion of someright rule.

3.3. THE SINGLE CONCLUSION CASE 43

DEFINITION 9 (CRITERION Dytyong)

I' ..., I if there exists aproof of I' = F where all sequents of the foomT' = G
(for non-atomic G) are the conclusion of the right rule which introduces the topmost
connectivein F'.

We use D to denote both D,,cqr @and Dgiyo4-
Examples of proofsthat are excluded by criterion D but not by criterion C' include

— Arx — A — A
pbp ™" qbq " prfi
= Fp
Patp®q pF?p
p®qbp®q p7p

In both cases the only possible proof beginswith aleft rule.
Note that strictly speaking, criterion Dy, does not alow therule

'
E7F

W?—-R

since it does not add the desired connective to an existing formula. For intuitionisticlin-
ear logic the use of 7 in goal formulae is of limited use since it only alows weakening
and not contraction. Note that a similar effect can beencodedas F' & L.

PROPOSITION 7

Dstrong ~ Dweak

PROPOSITION 8
Dweak ~ C

PROPOSITION 9
Dstrong ~ C

PropPoOSITION 10
C + D
PrRoPOSITION 11

Dweak 7%_) Dstrong

PROPOSITION 12
A% D,B+¥ D

v CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

We might expect that D ~+ A; however asin the case for criterion C' we can apply
right rules and then weaken atoms.

PrRoOPOSITION 13
D4 A

PrROPOSITION 14
D+ B

3.3.1 Extending Uniformity to Deal with Atomic Goals

Neither version of uniformity places any limitation on the proof of sequents of the form
' - A where A isatomic. Thisisaproblem since an atom is just as much athread of
control asisacompound goal. It differs from the logical connectives in that where the
semantics of A and 3 are fixed by the logic, the semantics of p or append is defined by
the program.

We argue that limiting in some way the search for proofs of sequents with atomic
goasisdesirable.

Firstly, note that criterion D is not stronger than criteria A and B. Thereason is es-
sentially that although the conditions of criterion D do imply criteria A and B these con-
ditions are not applied when the goal is atomic and hence violations of criteria A and B
can occur when the goal isatomic. Aswe shall see applying an appropriate constraint to
the search for proofs of sequents with atomic goals yields a criterion which is stronger
than criteria A and B.

Secondly criterion D allows some rather bizarre logic subsets as programming lan-
guages. Consider the language

D:=DAD|DVD|3]aD|VaD|A|-A Gu=A

Clearly thislanguage satisfies criterion D sincethe goal cannot be non-atomic. However
it is hard to consider it to be a programming language since there is no limitation on the
structure of the proof. Other evidence against it being considered a logic programming
language is that goals lack variables and thus a notion of answer substitutions. Further-
more it fails criteria A and B.

3.3. THE SINGLE CONCLUSION CASE 45

There are a number of possible approaches to limiting the proof search process for
sequents with atomic goals:

1. Simplicity
2. Static Clausal Form
3. Dynamic Clausal Form

The first, the notion of simplicity, was introduced in [107]. Simplicity restricts occur-
rences of the — — L rule to have axiomatic right hand premises. Thisisrelated to [93].
Note that this assumes that the logic has the rule:

T~-F TI,GFH
IF>GFH

The advantage of simplicity isthat it is simple to reason about and to compare to other
criteria. The disadvantage is that it is not general. The other two approaches use the
notion of clausal form. We view a program as a set of clauses of theform G — A with
the single left rule:

% Resolution

=

where (G — A) € T

This view can be used as a criterion in two different ways. Satic clausal form insists
that the program is given in clausal form. Dynamic clausal forminsists that the logical
presentation bundle all of theleft rulesinto asinglerulethat isapplied whenever the goal
isatomic. This can be seen as deriving clauses at runtime. The single rule can be quite
complex but it yieldsa system that, in conjunction with uniformity can truly be said to be
goal directed — for any sequent the choice of which rule to apply is determined entirely
by the goal.

Static clausal form is usable although it does tend to overly restrict the program. We
shall consider dynamic clausal form sinceit generalises both simplicity and static clausal
form.

A problemwith dynamic clausal formisthat formulating an equivalent logical system
which combines the left rules into a single rule can involve considerable ingenuity (see

46 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

for example [122]) and as aresult it is generally hard to show that it is not possible to
combine the left rules into a single rule. Thus rather than modifying the proof system
we retain the original system and require that a sequence of applications of left rules be
able to be treated as an atomic entity. That applications of left rules are “bundle-able”
implies that a single left rule can be devised (namely the one that does the appropriate
bundling); however, the converse does not hold since even though bundling sequences
of left rules may not be possible without a loss of completeness it may be possiblein a
different presentation of the logic.

We bundle up a sequence of left rule applications into a left-focused proof step. We
then consider what languages are complete when left rules can only be applied as part of
aleft-focused proof step.

DEFINITION 10 (LEFT FOCUSING)
A proof of asequent isleft-focused if one of the following hold:

1. It consists of asingle application of the Ax rule.

2. It begins with a sequence of left rules resulting in a proof tree with open nodes

I+ EF r,+F,
i
prraft
such that:
(@) Thegoa A iseliminated, that is, it is not any of the F;.
(b) 11 consistsonly of left rulesor Azx.

(c) All of the principal formulae in1I are sub-formulae of D (or D itself).

We have to take care with multiple copies of atoms. For example the proof

I'Ep pkp
Lp—pkp

3.3. THE SINGLE CONCLUSION CASE 47

hasasingleopennodeI’ - pwhere ;7 = A = p; however by labelling distinct
occurrences of p we can see that the goal p; isactually eliminated:

L'Epy psbpr

— —L
Iypo — ps b py

Theintuitionisthat aleft-focused proof of an atomic goal selects aprogram formula
and reduces it entirely. In the process, the goal is satisfied and new goals are possibly
created. For example the following proof fragment is left-focused:

r,I'Fq pl—pr

q—op,rltp _O®
(¢—~p)@rlip — ~
s&((q—p)®r),I'kp

—L
L

L

Thisisrelated to the notion of resolution developed in [122].

DEFINITION 11 (CRITERION E)
[kg F if there exists aproof of I' = F where all (sub)proofs of sequents with atomic
goals are left-focused.

As an example consider the language
D:=DVD|DAD|3aD |VzD | A| -A G.:=A

Aswe have seen this language satisfies criterion D but it isrejected by criterion E since
the sequent p(1) Vv p(2), Vz—p(z) F ¢ cannot be proved in an appropriate manner. The
proof cannot begin with Vv — L since there is no term ¢ such that both p(1) + p(¢) and
p(2) F p(t) are provable. Hence the proof must begin with vV — L:

O O L C R
p(1),=p(MF = p2),~p2)F o
p). M) Fg o P2 w@)Fg
p(1),Vz—p(z) F ¢ p@),Vrop(z) g

p(1) V p(2),Vz—p(z) - q

Consider now whether this proof is left-focused. It does not begin with an axiom rule
and hence must begin with a sequence of |eft rules. If we take this sequence of left rules

48 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

to bejust thefirst rule (v — L) then we fail the first sub-condition of definition 10 since
the goal (¢) isnot eliminated. If we take the sequence of left rules to be more than just
the first rule then we fail the third sub-condition since principal formulae are from both
program clauses and not from asingle D.

Putting criteria D0, and E' together gives us criterion F':

DEFINITION 12 (CRITERION F)

' b F if thereisaproof of I' - F where any sequent of the form A + A (where
A isatomic) is the conclusion of aleft-focused (sub-)proof and any sequent of the form
A F G (G non-atomic) is the conclusion of the right rule which introduces the topmost
connectiveinG.

PROPOSITION 15

F o~ Dstrong ~ Dweak

PROPOSITION 16
D4 E

PROPOSITION 17
F~C

PROPOSITION 18
ChF

PrRopPOSITION 19
A4 F

PrRopPOSITION 20
F~~ A

PROPOSITION 21
F - B

PROPOSITION 22
B4~ F

3.3. THE SINGLE CONCLUSION CASE 49

PROPOSITION 23

E 4 C

COROLLARY:E 4 F ,E + D (snceF ~ C and D ~ C)
PROPOSITION 24

E 4 B

PROPOSITION 25
E A

PROPOSITION 26

B4 E

COROLLARY:A + FE (SnceB ~ A)
PROPOSITION 29

LetT' - A beasequent in alogic subset which satisfies criteria E' and Dy, @nd such
that " = A is provable. Then there exists aproof of I' = A which satisfies criterion F'.

50 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Figure 3.1 Single Conclusion Criteria Definitions

Criteria Definition
A NoW — R
B No sub-proofs of T" I
C I' = 4F is conclusion of 3 — R rule

Dyear T'F F (F non-atomic) are conclusion of a right rule

Dsrong T' = F (F non-atomic) are conclusion of the right rule
E Atomic goals are conclusion of left-focused proof step
F E+ Dstrong

Figure 3.2 Relationships for Single Conclusion Criteria

C

|

Dweak

I

strong

/ NI/

F E + Dstrong

3.4 Examples

We now consider anumber of languages and relate them to the various criteria. Notethat
most of the languages in figure 2.8 are multiple conclusion and are covered in section
3.6. Both languages in this section have been shown (in [112] and [70] respectively) to
satisfy uniformity. The contribution here is to show that they also satisfy criterion F'.
Since criterion F' is stronger than uniformity thisis anew result.

3.4. EXAMPLES 51

3.4.1 PureProlog

Prolog is often presented as a language based on classical logic which is multiple con-
clusion. Actually, the language does not make use of multiple conclusions and indeed,
intuitionistic and classical logic agree where the Prolog subset is concerned. The Prolog
syntax isgiven by thefollowing BNF. Note that whenever the user’squery is non-ground
there is an implicit existential quantifier involved. The following grammar makes this
explicit.

D = [Vz|(G' — A) Gu=3T(A1N...NA4,)

Prolog satisfies all of the criteria.

PROPOSITION 30

Prolog satisfies criterion B

Proof: Proof by induction. The only rules goplicable to a sequent of the formT + are
V-L,—-L,W-L andC-L. Itiseasy to verify that whenever the conclusion of one of these
ruleshas an empty goal so does at |east one of itspremises. Notethat the axiom rule needs
a non-empty goal. Hence no proof of a sequent with an empty goal can succeed. B

LEMMA 31

Letl’ c Dand F € G. Thenfor any proof of I' = F' all sequents in the proof are of the
fomI"+ F' suchthatT' Cc Dand F' € G.

Proof: Proof by induction. Theonly ruleswhich can be gopliedintheproof are Az, \-R,
3-R,V-L, —-L, W-L and C-L. Note that the previous lemma precludes the use of W -R.
It is easy to show that if the conclusion of one of these rules satisfies the condition then
so do its premises. Bl

PROPOSITION 32

Prolog satisfies criterion D, ong

Proof: To show that Prolog satisfies criteria Dy, ,,, We need to show that for non-atomic
goalsthe appropriate right rule can be applied immediately without |oss of completeness.
That isthat

1. '+ 3aF iff T+ F[t/x] for sometermt.

2 TFRAF iff T'F Fyandl - F,

52 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Showing this involves a permutability argument. From the permutability properties of
classical logic (see section 2.4) it isevident that A — R permutes down past any rule and
that 3 — R permutes down past bothV — L and — — L. Hence, if a sequent is provable
then by permuting occurrences of right rules down we can obtain a proof where the two
properties above are satisfied. B

COROLLARY:Prolog satisfies criteria D ,eqr, C and A.

DEFINITION 13 (DECOMPOSITION)

A sequence of left rulesis said to decompose a program formula D if their principal for-
mulae are sub-formulae of D (or D itself) and no more left rules can be applied to sub-
formulae of D.

Intuitively decompositioninvol vessel ecting aprogram formulaand applying left rules
exclusively to it until oneisleft only with atoms.

PROPOSITION 33

Prolog satisfies criterion E

Proof: Consider a proof of a sequent of theform D,T" - A. We know that D must have
theform[Vz](G — A). Notethat the only relevant left rules (V, — and C') permute with
each other. Thus we can commit to decomposing a clause as an atomic proof step. This
proof step looks like:

AFA I,VaG = AFG

T,VaG - A,G > AF A

[WVeG — A VG — AF A
T,VaG —» AF A

— —L
L
L

Y —
C —

Observe that the proof step is left-focused and that it succeeds if and only if the goal
matches the head of the clause. B

PROPOSITION 34

Prolog satisfies criterion F'

Proof: Prolog satisfies criteria Dy, @d E. According to proposition 29 it therefore
satisfies criterion F. A

3.4. EXAMPLES 53

342 Loalli

Lolli was introduced in [69]. For our purposes it can be viewed essentially as asingle
conclusion version of LygonS. Lolli’s syntax is given by the BNF:

D:=T|A|D&D|G—oD|G=T"D|Ve.D

G:=T|A|G&G|D -G |D=G|V2.G |GG |1|GR®G|G|IxG
PrROPOSITION 35
Lolli satisfies criterion A

Proof: Obvious sincelinear logic does not possess the weakening right rule. B

PROPOSITION 36

Lolli satisfies criterion B

Proof: Proof by induction.

Basecase: No sequent with an empty goal can succeed sincethe program cannot contain
the constants 1 and L and the Ax rule requires a non-empty goal.

Induction: If the conclusion of a left rule has an empty goal then so does at least one
premise of the rule. Hence no sequent with an empty goal can be proven. il

PROPOSITION 37

Lolli satisfies criterion D ;g

Proof: See[66]. Theproof basically involvesthe useof permutability propertiesto trans-
form a given proof into one satisfying Dy on,. B

COROLLARY:LOlli satisfies criteria D eq, and C.

We now look at showing that Lolli satisfies criterion E. The stepsinvolved are gen-
eral and remain the same when showing that other languages satisfy criterion E.

1. Show that when the goal is atomic we can decompose a single program formula
before considering other program formul ae without losing compl eteness.

2. Show that if such aproof step is provablethen there existsaproof which consumes
the (atomic) goal.

6Conversely, Lygon could be viewed as a multiple conclusion generalisation of Lolli.
"a=b=(la) —ob

54 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

If these two requirements are met then when searching for a proof it is sufficient to
work on a single program clause at a time and the resulting proof is guaranteed to be
left-focused.

For example consider proving the sequent:

Vr(p(z) &), q & 1,V ((g ® r) —o p(z)) - p(a)

Since this sequent represents avalid Lolli program and goal we are guaranteed that it is
provableif and only if there isa proof which manipulates program clauses one a atime
and which is left-focused. One such proof begins by applying a left-focused proof step
toVz((¢ ® r) —o p(z)) yielding the following:

Va(p(z) &r),q & r - q@7r pla) - pla) e
Vo (p(x) &), g &, (¢ ®1) o pla) Fpla)
Va(p(z) &), q &1, Vz((q® 1) —o p(x)) I pla)

L
L

Thisisleft-focused. Since the goal is compound we can apply aright rule:

q&rtq Vr(p(x)&r)bEr
YV (p(z) &r),lq&r Fg®r

We can then finish the proof by applying aleft-focused proof step to each of thetwo open

nodes:
rer
- - _L
gtk q 2 p(b)&rl—r&v I
&1k Yy &)k B
q&r g z(p(x) &) P

Vr(p(x) & r),lq &rEqer

Note that the only place in the proof search process where there was any choice to be
made as to which inference rule to apply (and to which formula) was at the very start
when we could have selected to decompose an alternative program clause; in the rest of
the proof search process the selection of the inference rule and principal formula was
deterministic.

We now apply the procedure outlined to showing that Lolli satisfies criterion E.

3.4. EXAMPLES 55

LEMMA 38

LetT" beamultiset of Lolli program formulae and let F beaLolli goal formula such that
I' - F isprovable. Then thereisaproof of I' - F where all |eft rules are part of a se-
quence which decomposes a single clause.

Proof: Observethat all of the left inference rules which can be goplied in aLolli deriva-
tion are synchronous. Hence according to the focusing property [6] once we have goplied
aleft ruleto aprogram formulawe can continue to decomposethat formulawithout aloss
of completeness. Furthermore, as observed in [6]:

When anegative atom A+ isreached at the end of acritical focusing section,
the Identity must be used, so that A must be found in the rest of the sequent,
either as arestricted resource . . . or as an unrestricted resource.. . .

Thus, once a program clause is decomposed to an atom on the left there is no loss of
completeness in requiring that the next rule be the axiom rule. B

We now need to show that if the decomposing proof step is provable then there ex-
ists a proof which consumes the (atomic) goal. In the following, when we say that “ the
proof fails” we mean that it can not be completed with an axiomrule. In general, it may
be possible to complete the proof step using other program clauses. However, once we
have chosen to decompose a given program clause, lemma 38 allows usto insist that the
decomposing proof step terminate with an axiom rule where the program clause reduces
to an atom. Hence we can ignore possible completions of the proof step which involve
other program clauses without a loss of completeness.

We begin by defining anotion of an atom matching aclause. Wethen argue case-wise
that:

(@) If theatom does not match the clause then a proof step focusing on the clause must
fail.

(b) If the atom matches the clause then a proof step focusing on the clause either fails
(see the note above) or eliminates the (atomic) goal.

In the following we let F' be the selected program clause and A the (atomic) goal.

56 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

DEFINITION 14
A matches the Lolli program clause F iff

e F isatomicisequal® to A.

o ['=F, &I, and A matches at least one of the F;
e '=_G — F' and A matches F'

e '=_G = F' and A matches F'

o ['=VaF'" and A matches F’

LEMMA 39

Consider aproof step which decomposesthe L olli program clause F' inthesequent A, F' +
A where A isatomic. Thenif A matches F' thenthe proof step either eliminates A or fails;
otherwise, if F' does not match A then the proof step fails.

Proof: Induction on the structure of F'.

e F isatomic: Without aloss of completeness (lemma 38) the sequent must be the
conclusion of an axiom rule. If F matches A then we havel', A+ A which either
eliminates A or fails (if T' contains linear formulae). If F' does not match with A
then the axiom rule cannot be applied and the proof fails.

e = T: Thereisno left rule so the proof fails.

e F'=F| & Fy: If F matches A then without loss of generality let A match F, and
not match F,. By the induction hypothesis the proof which uses the left & rule to
select F, either eliminates A or fails. The proof which usestheleft & ruleto select
F, fails. If F' does not match A then A matches neither F', nor F, and by induction
the premise of the & — L rulefails.

o '=_G —o F': Therdlevant ruleis:

"F'FA TFG
I TG —oFFA =

L

8 At the implementation level read as “is unifiable with A”

3.5 THE MULTIPLE CONCLUSIONED CASE 57

Figure 3.3 Summary of Single Conclusion Languages and Criteria
Language A B C Dyeak Dstrong £ F
Prolog o o o 0O 0 0 d
Lolli o o o [l [l 0 O

Since A matches F' iff it matches F’, according to the induction hypothesis, the
premise of theinferencefailsif A doesnot match F' and hencethe conclusionfails.
Likewise, if A matches F' then the sequent is provable only if the proof eliminates
A and this property carries through to the conclusion of the inference.

The remaining two cases are analogous.

PROPOSITION 40

Lolli satisfies criterion E

Proof: LetI' = A be provable. The sequent must be the conclusion of either an axiom
ruleor aleft rule. If it the conclusion of an axiom inference then we are done. Otherwise,
the left rule is being applied to F' € T'. According to lemma 38 there is a proof which
focuses on F'. According to lemma 39 this proof eliminates A. B

PROPOSITION 41

Lolli satisfies criterion F

Proof: Lolli satisfies criteria E and Do, and by proposition 29 it therefore satisfies
criterion F'.

3.5 TheMultiple Conclusioned Case

We now generalise our criteria to the multiple conclusion case. Most of the commen-
tary carries across unchanged. As aresult this section contains mostly definitions and
theorems.

DEFINITION 15 (CRITERION)

A criterion isadecision procedure which takesa sequent " - A and returnstrue or false.
We writel F, A to indicate that the sequent T" - A is assigned true by criterion x. We

58 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

require that criteria be sound, that is, if I' -, A holdsthenT — A must be provable.

Ingenera I' -, Aisdefinedtoholdif I' = A holdsand thereisaproof which satisfies
some additional constraints. Thistrivialy ensures soundness of the criterion.

The next definition is based on the onein [112]. It providesthe link between criteria
and logic programming languages.

DEFINITION 16 (ABSTRACT LOGIC PROGRAMMING LANGUAGE (ALPL))

Let D beaset of legal program formulae, G aset of legal goal formulae and- somenotion
of provability. Thenthetriple< D, G, > isdeemed to be an abstract |ogic programming
language (AL PL) according to criterionx iff for any finite subset P of D and for any finite
subset G of G

PrG+<=PrG

DEFINITION 17
Criterion x isstronger than criterion y (writtenx ~ y) if we have that

VIVA Th,A = 'k, A

Letz ~ y. If <D, G, > isdeemed tobean ALPL by criterion x thenit isa so deemed
to be an ALPL by criterion y.
We write z - y when z is hot stronger than y.

LEMMA 42
~~ [sapartia order.
Proof: ~~ isreflexive (obvious), transitive (obvious) and antisymmetric (obvious). B

The definitions of the various criteria are summarised in figure 3.4 on page 68.

DEFINITION 18 (CRITERION A)
I' F4 A if thereis a proof of I' - A which does not use the contraction-right and
weakening-right rules.

Asin the single conclusion case the intuition is that program threads do not sponta-
neoudly die or clone themselves. Interestingly this criterion is weaker here than in the

3.5 THE MULTIPLE CONCLUSIONED CASE 59

single conclusion setting. Consider the following proof

In a single conclusion setting the weakening step must take place before the —¢ can be
moved across the turnstile. On the other hand in a multiple conclusion system thereis
no requirement for there to be at most one conclusion and the following proof becomes

possible
iraq Ax
W —R
VALY
¢,7qFp

This suggests that for classical logic limiting occurrences of weakening-right is not as
strong acriterion asitisfor intuitionisticlogic. Notethat it is possibleto eliminate weak-
ening altogether by combining it with the axiom rule. This can be done by introducing
the compositerule Ax':

Az’

TFA TNA#(

Thus, placing conditions on occurrences of weakening-right does not seem to limit the
class of formulae that are judged to be logic programming languages since weakening
can be eliminated. On the other hand, the absence of contraction-right isalimitation and
thus criterion A isnot trivial for classical logic.

DEFINITION 19 (CRITERION B)
I' =5 A if thereisaproof of I' = A which does not contain a sub-proof of a sequent of
theform = + for some=.

Thisisthesameasthesingleconclusionversion. Asaresult of thereductionin power
of criterion A we havethat for multipleconclusion logicscriteria A and B are not rel ated.
PROPOSITION 43

B A

PROPOSITION 44
A+ B

60 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

The next criterion captures the importance of answer substitutions. The single con-
clusion definition coversthe case I' - Jz F'; the question remains however as to what
requirement we place on sequents of theform I = 3z F', A? There are two possibilities;
we can either just retain the single conclusion definition and not impose any constraints
on the case where there are multiple goal formulae or we can insist that the sequent isthe
conclusion of an 3-R rule whenever it contains a formula whose topmost connective is
3, regardless of what other formulae are present. This second possibility is the stronger
of the two and corresponds to Ci;y o

DEFINITION 20 (CRITERION (')
[F¢ A if there existsaproof of I' = A where all sequents of theformI™ - JxF' are the
conclusion of an application of the 3-right rule.

Note that criterion C' isweak in that it is only applicable to sequents where the con-
clusion containsthe singlegoal Jz F'.

DEFINITION 21 (CRITERION Ciirong)
[eyon, A if thereexistsaproof of I' = A where all sequents of theformT' = 3z F, A
are the conclusion of an gpplication of the 3-right rule.

PROPOSITION 45
Cstrong ~ C

We might expect that C' ~~ A since criterion C' prohibits the weakening of formulae
of the form 4z F. However, asin the single conclusion case, thisis not sufficient - one
can always apply the 3 — R rule and then weaken the result.

PROPOSITION 46
C 7"’ A i Cstrong 7%') A

PROPOSITION 47
C 7"’ B i Cstrong 7%') B

PROPOSITION 48
A%—)C,B%C,A%Cstmng,B%*Cstrong

3.5 THE MULTIPLE CONCLUSIONED CASE 61

3.5.1 Generalising Uniformity to the Multiple Conclusion Case

Throughout the next section we shall use A to denote a multiset of atomic formulae and
C to denote a multiset of compound (i.e. non-atomic) formulae.

In generalising uniformity to amultiple conclusion setting we have a choice to make.
There are two possibilities:

(1) All sequentsin the proof of theform I - C arethe conclusion of aright rule. That
is, if the succedent consists entirely of compound goals then the sequent must be
aconclusion of aright rule. If the succedent contains both atomic and compound
goas then no restrictions are applied. Thisis analogousto criterion C.

(2) All sequentsin the proof of theform I" - C, A are the conclusion of aright rule.
That is, if the succedent contains any compound goals then the sequent is the con-
clusion of aright rule. Thisis analogousto criterion Clyon,-

In addition to requiring the proof to be guided by compound goalswe can also require
that the proof process be guided by atomic goals. Thereisasingle mechanism for doing
this and the choice we face is whether to apply it or not. Our choices are:

(@ All sequents are either the conclusion of a right rule or the conclusion of a left-
focused proof step.

(b) Thereisno use of atomic goals to guide the proof search, so for example thereis
no restriction on the proof of sequents of theform " - A.

Since these two choices are independent we can consider various combinations. As
we shall see some combinations do not make sense and some combinations coincide.
There are four combinations of choices:

(1b) We choose to restrict ourselvesto right rules only when there are no atomic goals
(1) and atoms are not used to guide the proof (b). Inthissituation we are obtaining
only partial guidance from compound goals. Since we do not use atoms to guide
the proof there is insufficient guidance to be able to consider this choice goal di-
rected. For instance there is no restriction whatsoever on the proof of sequents of
theformI' - A, C.

62 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

(1a) By making use of atomic goalswe obtain acharacteriser that isuseful. Notethat it
Isessential that we have anotion of atomic goalsdirecting the proof search process.
We term this characteriser synchronous uniformity. This notion is similar to the
notion of locally LR proof search which was used in the design of Lygon [122].

(2) By choosing to be guided by compound goals even if there are atomic goals we
obtain sufficient guidance. The only place where the proof search process has no
restrictions is in the proof of sequents of theformI" - A. Asin the single con-
clusion case we argue that making use of atomic goals to direct the proof search
processisdesirable. Notethat the need to use atomic goalsto guide the proof is not
asvital hereasitisfor the previous case. We term this characteriser asynchronous
uniformity. Thisisthe notion that is used in (for example) the design of Forum
[106].

3.5.2 Asynchronous Unifor mity

Given that we can apply right rules whenever there is a compound goal formulae it is
easy to show that we cannot have impermutabilities on the right. Consider two connec-
tiveswhose right rules do not permute, say ® and 2, where e may need to be donefirst.
Consider now a sequent of the form

((g"®r) —p) Fpgert

Thissequent isprovable, but the proof violates synchronous uniformity since we need to
replacethep with ¢->9r beforewe can apply the ® rule; that is, althoughthe goal contains
anon-atomic formulawe have to apply |eft rules before we can apply aright rule. Thus
asynchronous uniformity impliesthat the right rules permute over each other®. Note that
thisisindependent of whether atomic goals are used to guide the proof.

Inorder todefinethisformally (ascriterion D 4) weshall need anotion of |eft-focusing
for multiple conclusion logics.

9Thisassumesthat program formulagare permitted to havetheform D ::=!(G — A). Thisassumption
holdsfor all languages considered in thisthesis.

3.5 THE MULTIPLE CONCLUSIONED CASE 63

DEFINITION 22 (LEFT FOCUSING)
A proof of asequent isleft-focused if one of the following hold:

1. It consists of asingle application of the Ax rule.

2. It begins with a sequence of left rules resulting in a proof tree with open nodes

L FA I, FA,

i
prrAa Tt
such that:
(@) Thegoals A are diminated, that is, they are not in any of the A, .
(b) 11 consistsonly of left rules or Azx.

(c) All of the active formulae in 11 are sub-formulae of D (or D itself).

Asin the single conclusion case we have to take care with multiple copies of atoms.
For exampl e the proof
I'Ep pkp

— =L
L(p—p) Fp

hasF; = A = p. However by labelling distinct occurrences of p we can see that the
goal p, isactualy eliminated:

I'Epy p3bpi
L, !(pe —ops) Fpy

— —L

Theintuitionisthat aleft-focused proof of an atomic goal selects aprogram formula
and reduces it entirely. In the process, the goal is satisfied and new goals are possibly
created.

Note that for Forum there is a minor technicality — A could be empty. Thisonly oc-
curs with L in clauses. Such clauses can be resolved against at any time. It is possi-
ble to insist in the definition of left-focusing that A be non-empty. If thisis done then

64 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Forum™ does not satisfy criterion D 4 sincethe sequent T — L - p is provable but the
only proof possible begins with aleft-focused proof step which does not eliminate p:

1F FT,p
T—olFp

—0 —

Note that the use of criterion Dy precludes clauses of theform G — | even without
limiting A to be non-empty (although we need to assumethat the language in questionis
sufficiently rich). Assumingthat T and p®q are both valid goalswe have that the sequent
T — 1 F p®qisprovable (theleft proof below). However, since the goa consists of a
single compound formulacriteria D requiresthat there exists a proof which beginswith
® — R and astheright proof below demonstrates no such proof exists.

o p AR ETe
1F—" " FT,p®q TolFp " kg

T olFp®gq — L T olFp®g -k

The exampleused doesnot apply to D 4, sinceit makes use of the goal formulap®q which
is not asynchronous and which would not be permitted to occur in a language derived
using D 4. The assumption of “sufficiently rich” needed above includes the presence of
synchronous goal connectiveswhich prevent thelanguage from being accepted asalogic
programming language by criterion D 4.

DEFINITION 23 (CRITERION D)

I' Fp, Aif thereexistsaproof of I' = A such that

e For any sequent of theformI" = A, C and for any (compound) formulae F' € C
there is a proof where the sequent is the conclusion of the right rule which intro-
duces the topmost connectivein F'.

e The proof of any sequent of the formI" - A is left-focused.

3.5.3 Synchronous Unifor mity

Synchronous uniformity relaxes the strong requirement that compound goal s direct the
proof search process whenever they are present. Doing thisis necessary in order to al-
low impermutabilities on the right to exist within a language. To be able to obtain less

3.5 THE MULTIPLE CONCLUSIONED CASE 65

guidance from compound goal swe need to compensate by obtaining more guidance from
atomic goals.

Note that for a sequent of the form I' + A, C we allow the proof to be guided by
an atom even though there are compound goals present. We cannot require that such
sequents be guided by atomsin all cases (thus giving priority to resolution over decom-
position) since in some cases decomposing compound goals will need to be done before
resolution. A simple example isthe proof of the sequent

pe(ger)Fpwagr

where we need to decompose the formulap e ¢ so that the p isavailable to the resolution
of r. Another exampleis the proof of the sequent!’

(rep) &(req Fp&aq,r

where p & ¢ needs to be done first so that we can choose different program clauses for
the two sub-proofs:

ror ZTP rEor m
repkpr reqbqr °
tepatrmgrpr s L TepatmdFar
(reop) &(reqbFp&qgr

w—L

L
& — L
&—R

DEFINITION 24 (CRITERION Dyg)
I' =pg A if there existsaproof of I' = A such that

e Any sequent of the formI" = C isthe conclusion of aright rule which introduces
the topmost connective of aformulaF' € C.

e Any sequent inthe proof iseither the conclusion of aright rulewhich introducesthe
topmost connective of aformulain the goal or is the conclusion of aleft-focused
(sub-)proof.

We shall use D to refer to either of D4 and Dy.

10Note that this could also bewritten as: (p* — r) & (¢* —r) Fp&q,r

66 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Both D, and Dg require that aright rule introduces the topmost connective of afor-
mula. Strictly speaking, thismeansthat the following rules are not acceptable in a proof:

[H7F,?F,A
TEA o g ,7F,

? _
[78 A rep A 7R

There are two solutions

1. View weakening and contraction of goalsasundesirable even if they arelimited to
certain goals (i.e. it'safeature, not a bug)

2. Relax the definition to require that the right rule be specific to the top level con-
nective - this rules out weakening and contraction.

Of the languages considered in figure 2.8, the difference only affects ACL and it can be
argued that the language still satisfies criterion Dg even though it allows formulae of the
form?A,,. Thereasonfor thisisthat the formulae which can be replicated by contraction
are of avery limited form —they must be “message predicates’ —and the contraction can
be delayed until a“message receive’ (A,, ® G) is executed.

Notethat the current Lygonimplementation does not allow goalsof theform ? F' since
they do cause a problem. Specifically, it becomes hard to determine that a sequent of the
form T = G, ?F has no proof since the proof search spaceisinfinite.

In general an application of right contraction cannot be delayed indefinitely sincethe
formula may be needed. In the proof of the sequent

(1 —(r®q),(¢g— (p®p)Frp

we need to begin by applying C? — R twice so that we can resolve against the second
clause.

Finally, note that it is possible to avoid the use of ? in goals by replacing ? F' with a
new constant p and adding the program clause ! (((F 2 p) ® L) — p). Similar behavior
to 7 can be captured as follows:

I'FFp A TEA
L-Fep A LA
r-(Fep@el,A TrH(F»padlA
'Ep A 'Ep A

3.5 THE MULTIPLE CONCLUSIONED CASE 67

For example, the sequent above could be written as

(1— (r®q),!(¢g—(ep), ((pep)®L)—p)Frp

This technique is not perfect since the right ! rule behaves differently but it does cover
common logic programming uses of ? (as opposed to theorem proving applications).

PROPOSITION 49
B+ D,A%D

PROPOSITION 50
DA ~ A

PROPOSITION 51
DS ~ A

PROPOSITION 52
D~ C

PROPOSITION 53

Dy~ Cstrong

PROPOSITION 54
DS 7"’ Cstrong

PrROPOSITION 55
D4 B

PROPOSITION 56
C 7%_) D i Cstrong 7%_) D

PROPOSITION 57
Dg Dy

PROPOSITION 58
DA ~ DS

68 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Figure 3.4 Multiple Conclusioned Criteria Definitions

Criteria Definition
A NoC—-RorW —R
B No sub-proofs of I" -
C I' - 4F is conclusion of 3 — R
Cstrong I' = 3F, A'is conclusion of 3 — R
Dy T'F A, Cisthe conclusion of a right rule
I' - Ais left-focused
Dg I' F C is the conclusion of a right rule

I' H A, Ais either left-focused or the conclusion
of a right rule

The previous proposition implies that any language that satisfies criterion D 4 also
satisfies criterion Dg. However it does not tell us anything about the properties of lan-
guages which satisfy Dg but not D 4.

Note that for sequents of the form I = C criterion Dy requires that the sequent be
the conclusion of aright rule which introduces the topmost connective of some formula
F € C whereas D, requires that for every formula £ € C there exist a proof which
begins by introducing that formula's top level connective.

It appears feasibleto consider acriterion lying between D 4, and Dy that modifies Dg
by requiring that sequents of the form I" - C have a proof which introduces the topmost
connective of F for all F' € C. Thisdiffersfrom criterion D 4 inthat thereisno require-
ment that sequents of theform I" - C, A be the conclusion of aright rule.

PROPOSITION 59
Let Ds. be acriterion that modifies Dg by requiring that sequents of the form T’ + C
have a proof which introduces the topmost connectiveof F' fordl F € C. Then Ds, is
equivalentto D 4.

3.6. EXAMPLES 69

Figure 3.5 Relationships for Multiple Conclusion Criteria

/\/

strong

\/

3.6 Examples

Before we proceed to consider specific example languages, let us establish afew more
results.

LEMMA 60

LetI', A - A have alinear logic proof. Then there is an incomplete proof of I'',T" +
A, A" which has an identical structure and where some of the sequents of the form

ArFa A

have been replaced by the open node
M= A A

Proof: Weuseinduction. Observethat the “axiomatic” rules (Axz,1— R ,T — R) remain
unchanged except that Ax rules are changed as specified. All of the unary rules except
for! — R alow the induction to proceed smoothly. Observe that the two binary rules -
® — R and & — R - also satisfy theinduction. In the case of the! — R rulethe conclusion
cannot contain any atoms; thus even if it does occur in aproof of I', A = A it remains
unaffected by the replacement of A at the root since the change gets shunted along with
occurrences of the root sequent’s formula A. B

70 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

For exampleletT’ = p —o g, let A = ¢®!(p — p)andlet A = p. Thenthe
sequent I', A -+ A isprovable:

p—l—pr
—— Ar ——— Az —R
prEp ¢Fq” . Fp—p 4
P—g¢phq Hp—p) o,

p—q,pkq®!(p —op)

By the previouslemmathereexistsaproof of I', I" - A, A’ thatisaproof of p — ¢, " I+
q®!(p — p), A’ where some of the axiom inferences are replaced accordingly and where
the structure of the proof is preserved:

—— Ax
—— 4 PEP T g
Ep A qu_f_L Bl NS
p—oql"qA "p—p) o,

p—oq,I"Fq®!(p —p), A

The next theorem asserts that when the program formul ae have a particular form then
limiting the proof search process to only perform left-focused proof steps when the rel-
evant atomic goals are present preserves completeness. A problem we shall encounter
in the proof of the theorem is that it is possible to begin applying a left-focused proof
step even if the guiding atom is not yet present and perform the appropriate right rules
to introduce the needed atom only when it is needed for the application of axiom rules.
The previous lemmalis used to argue that it is complete to ignore proofs which do this,
asthere will always exist aproof of the same sequent which introduces atoms before de-
composing program clauses.

Thefollowing proof isan example of this. Notethat the proof decomposesaprogram
clause even though both atomsin its head are absent as goals.

_aFq z
Feer @71 g .
G—oqbFqgdr T

However there existsaproof which beginsby introducing the atom ¢ and only then (when
both atoms in the clause's head are present as goals) applies left rules to the program

3.6. EXAMPLES 71

clause.

gk q -G
G—oqFq
G—oql—qGBr@_R

DEFINITION 25
TheformulaF occurs negatively in ' — G andin F*. Intuitively asub-formulaoccurs
negatively if it can betransferred acrosstheturnstilein the course of aproof construction.

For example, in the sequent p —o ¢ F ¢ & (r @ s)* theformulae p and r & s occur
negatively.

THEOREM 61

Let T be a multiset of formulae of the form \Vz(G — (A1 79 ...7%9 A,)). Let A bea
multiset of formulae where all negatively occurring formulae are of the aopropriate form
(Vz(G — (A1 72 ...7%9 A,))). Thenthesequent T’ = A has a proof where each sequent
in the proof is either the conclusion of aright rule or is the conclusion of a left-focused
proof.

Proof: Observe that the connectivesY , !, — and e are synchronous when they occur
ontheleft. Thus by an gpplication of the focusing property [6] we can apply theleft rules
decomposing a program clause as an indivisible group of inferences without any 10ss of
completeness. We shall refer to this sequence of inferences as a left—focused proof step
or proof step.

A left-focused proof step satisfies most of the requirements of a left-focused proof.
We only need to show that it either fails or eliminates the relevant goals.

Firstly, we show that if the A; are present then the proof step eliminatesthem. Given
thesequentT' = A, if {A;...A,} C A then the proof step using the program clause
Wx(G — (A1 79 ...7%9 A,)) isleft-focused - that is, it eliminates the A;. The proof
involved is the following where we let P represent 'WVa(G — (A1 79 ... 70 A,)), T

72 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

AlFA L0 ALFA,

A mAFA,.. A L prga .
G—o(Am...9A,),PFA,... A, A \:’z

Va(G — (A3 B A))PF AL A, [T

Va(G — (A3 A))PF AL AA LT

PFA,.. A, A

We now need to show that without aloss of completeness we can limit the proof search
process so left rules are only applied when the appropriate atomic goals are present. That
is, if thereis a proof of a sequent which begins with a left-focused proof step where the
relevant atomic goalsare not all present then there exists another proof where the relevant
atomic goals are introduced before the left-focused proof step is performed.

We call an application of aleft-focused proof step premature when some of the rele-
vant atomic goalsare absent. The general casefor apremature application of aproof step
isthe following (11,), where we assume without |oss of generality that the atom missing
ISA;:

A FA A FA, ... AFA,

A mA LN A4, . .4 L priga .

G—o(A49...94,),PF Ay,... A, A va_
V(G — (A179...%0 An)),PEA Ay ... AL A .
Va(§ = (A% 8 A)), PN Ay And

PFA Ay, .. A, A

Observethat A, = A’ must be provable. According to lemma 60, if it is provable then
there exists an incomplete proof of the sequent P = A’, A, ... , A,, A of the following
form

PR AL Ay ALA L

PEAL Ay ... A, A

3.6. EXAMPLES 73

However the open node of this proof isthe root of the desired proof. Hence we can extend

this proof as follows

AFA .. A FA, :

Ao A F A, AT L prga
G—o(A9...9A4,),PFA,... A, A V_ZL

V(G —o (A5 .. % An)), P AL A A -

!vx(g—o(Aly...@An)),PkAl,...,An,A‘C’_L

PFA,. .. A, A

PEA Ay .. Ay A

Thus delaying the application of left-focused proof stepsuntil all of therequired atoms
are present preserves completeness. Furthermore, the proof step produces aleft-focused
proof as desired. B

361 ACL

ACL (Asynchronous Communication based on Linear logic) [85] has the flavour of a
concurrent extension to an ML-like functional language. The concurrent extensions are
based on linear logic. From our point of view we can view the language as having the
logical syntax!!

D :=IVz(G — A,)
Gu=L|T|An[?An |4, 169G |G&G|V2G | R

R:u=37(4, ®..0 4-G) | ROR

where A,, is a message predicate and A,, a program predicate. ACL satisfies some, but
not al of the criteria.

IINote that, unlike the technical report version of this chapter [151] we are using the extended version
of ACL on page 285 of [85] which includes quantifiers.

74 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

PROPOSITION 62
ACL failsto satisfy criterion Ciyong.
Proof: Consider the sequent - 3z(p(z)™ ® T), p(1) & p(2). This sequent is provable:

e T TR et T T TR
Fp()t @ T,p(1) S g Fp(2)t @ T,p(2) - R
- 3z(p(z)" @ T), p(1) F3a(p(x)t ® T),p(2) % —R

F 3z (p(z)" © T), p(1) & p(2)

However, there is no proof which begins with an3 — R rule sincet cannot be simulta-
neously both 1 and 2:

~pp) FT R
®—R N —— T-R
()" © T o) p2) FT
&—R T ®-R
- p(t)" @ T,p(1) & p(2) tr)" @ T p(2) 4 g
F 3z (p(x)" © T),p(1) & p(2)

Thus ACL fails to satisfy criterion Clyopn,. B
COROLLARY:ACL failsto satisfy criterion D 4.

PROPOSITION 63

ACL satisfies criterion B.

Proof: Simpleinductionargument. Theclass of program formulaeistoo limitedto allow
foraproof of T . R

PROPOSITION 64

ACL satisfies criterion Dg.

Proof: According to theorem 61, ACL proofs can be restricted to left-focused proofs
without a loss of completeness. Consider now a proof of a sequent of the formT" + C.
Since there are no atoms, we know that the sequent cannot be the result of Ieft rules or
the axiom rule and thus it must be the result of aright rule. B

COROLLARY:ACL sdtisfies criteria A and C'.

3.6. EXAMPLES 75

362 LO

LO (Linear Objects) [10] is one of the earlier languages based on linear logic. It ismoti-
vated by adesire to add concurrency and object-oriented features to |ogic programming.
Its syntax is given by the BNF:

D:=WNz(G—oA7%9...%A,)

Gu=A|T|[G&G|G®G
PROPOSITION 65
LO satisfies D 4.
Proof: All of the connectives used in goals are asynchronous, and so given any goal in a
sequent we can permute the rule decomposing that goal to the bottom of the proof, hence
thefirst condition of criterion D 4 is satisfied. Furthermore according to theorem 61, LO
proofs satisfy the left-focusing condition. B
COROLLARY:LO satisfies Dg, C', A and Cistyong-

PROPOSITION 66
LO satisfies B.
Proof: Smpleinductionasfor ACL. R

363 LC

Thelanguage £C (Linear Chemistry) [140] isbased on asimilar proof theoretical analysis
to Lolli and Lygon. It is designed to satisfy criterion D 4. Its choice of connectivesis
interesting. Note that £C does not use any binary rules and thus its proofs are “ sticks’
rather than trees.

D:=WNz(G—oA1%9...%A,)

Gu=A|le L |T|G®G|Ggag|Izg

PROPOSITION 67
LC satisfies criteria B and A.
Proof: Obvious for criterion A and simple induction for criterion B. R

76 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

PROPOSITION 68
LC satisfies criterion D y4.

Proof: LC satisfiesthe left-focusing condition according to theorem 61. Observethat all

of the connectives used in goals are relatively asynchronous. B
COROLLARY:LC sdtisfies criteria Dg , C' and Clsyyon,g-

Asfigure 3.6 indicates, the languages proposed fall into three groups:

1. Those which satisfy criterion D 4: LO and LC.

2. Thosewhich satisfy criterion Dg but not D 4: ACL.

3. Those languages which allow program clauses of theform G — L and hence fail

most of the criteria: Forum and Lygon.

In figure 3.6 the entries in brackets indicate that the result is due to atechnicality and

would otherwise be different.

Figure 3.6 Summary of Multiple Conclusioned Languages and Criteria

Language A B C Csyong Da Dg
ACL 0 o O [0 O
LO O 0O 0O O O O
LC 0 o o U a0
Forum 0o o o [0 o
Forum™ O O (@ (@ O O
Lygon O o o [0 o
Lygon™ OO0 O O O (O
Lygon™ O 0O O O O 0O
Lygon, (section 3.11) 0O 0O 0O [] O O

3.7. FORUM 77

3.7 Forum

Forum [109] is intended more as a specification language than as a programming lan-
guage. It isinteresting in that it consists entirely of asynchronous connectives (in goals)
and the same class of formulae in programs.

D:=g

Gu=A[G®G|G&G|G—~G|G="G|T|L|VzG

We begin by considering Forum asthe class of formul ae above extended using logical
equivalencesto cover all of linear logic asis donein [106].

PROPOSITION 69
Forum satisfies criteria A.
Proof: Linear logic does not have generally applicable right structural rules. B

PROPOSITION 70
Forum fails to satisfy criterion B.
Proof: The proof of the sequent | - violates criterion B. B

PROPOSITION 71
Forum fails to satisfy criterion C'.
Proof: Consider the following derivation:

M - p(b) + p(b) _

p(a) - Jzp(z) El_J_R_ R p(b) - Jap(z) El_i]i R

- p(a)", Jopla) Cpb) Bl g
Fp(a)” &p(b) ", Jzp(=) . —

(p(a)* &p(b)") " F Fep()

(thisisthe example given in section 3.1). B
COROLLARY:Forum fails to satisfy criteria D 4 , Dg and Clsyong

Forum fails most of the tests when considered in conjunction with logical equiva-
lences. We consider Forum in conjunction with logical equivalences because that is the

2 = b= (la) —b

78 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

approach followed by Forum’sdesignersin [106, 109, 111]. We now consider Forum as
it stands, without extension. We shall call thislanguage Forum™ .

LEMMA 72

Forum~ satisfies criterion A.

Proof: Trivial, since linear logic does not provide generally applicable right structural
rules. i

PROPOSITION 73
Forum~ failsto satisfy criterion B.
Proof: L isalegal Forum~ program which when given the goal | has the following

proof:
— 1 - L
"1 R

which violates criterion B. B

In the following, when we say that “ the proof fails” we mean that it can not be com-
pleted with an axiom rule. In general, it may be possibleto compl ete the proof step using
other program clauses. However, once we have chosen to decompose a given program
clause, lemma 74 (below) alows usto insist that the decomposing proof step terminate
with an axiom rule where the program clause reduces to an atom. Hence we can ignore
possible completions of the proof step which involve other program clauses without a
loss of compl eteness.

In order to prove the next proposition we shall need to define a notion of matching.
We can then reason as follows:

1. If the atoms do not match the clause then a proof step focusing on the clause must
fail.

2. If the atoms match the clause then a proof step focusing on the clause either fails
or eliminates the relevant atoms.

However we begin with auseful lemma.

3.7. FORUM 79

LEMMA 74

LetT" and A be respectively multisets of Forum~ program clauses and goal formulae
suchthatT" = A isprovable. Then there exists aproof of I' = A where all left rules are
part of a sequence which decomposes a single clause.

Proof: Observethat all of theleftinferenceruleswhichareapplicablein Forum~ derivations
are synchronous. Hence according to the focusing property [6] once we have applied a
left rule to a program formula we can continue to decompose that formula without aloss

of completeness. Furthermore, as observed in [6]:

When anegative atom A+ isreached at the end of acritical focusing section,
the Identity must be used, so that A must be found in the rest of the sequent,
either as arestricted resource . . . or as an unrestricted resource.. . .

Thus, once a program clause is decomposed to an atom on the left there is no loss of
completeness in requiring that the next rule be the axiom rule. B

In the following we let F' be the selected program clause and .4 a multiset of atomic
goals. Note that here we are matching a program clause with a number of atoms.

DEFINITION 26
The multiset of atoms.A matches the Forum™ program clause F iff

e [isatomic, A consists of thesingle formulaA and A = F'.

F =1 and A isempty.

F=FrF, A = A UA, andwehavethat A, matches F, and A, matches F.

F' = F, & I, and A matches at |east one of the F;
e =G —o F'" and A matches I’

o '=(G = F'" and A matches F'

F =VzF" and A matches F'

80 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

LEMMA 75

Consider a proof step which decomposes the Forum™ program clause F' in the sequent
I, F = A, A where A isamultiset of atomic formulae. If A matches F' then the proof
step either eliminates A or fails; otherwise, if F' does not match A then the proof step
fails.

Proof: We proceed by induction on the structure of F'. There are a number of possible
cases:

e F isatomic: Without a loss of completeness (lemma 74) the sequent must be the
conclusion of an axiom rule. If F matches A then the multiset actually contains
a single atom A and the axiom rule will eliminate A or fail (if there are excess
formulae). If F' does not match A then either F' does not equal A or A contains
the wrong number of atoms. In either case the axiom rule cannot be applied.

e F'=T: F cannot match A and since thereis no left rule, the proof fails.

e ' = 1: If F matches A then A is empty and it can be considered as consumed
so thiscaseistrivialy satisfied. If F' does not match A then it must be non empty
and hencethe 1. — L rule cannot be applied and the proof fails.

e ' = F| & F,: If F matches A then without loss of generality let A match F;
and not match F;. Then by the induction hypothesis the proof which uses the left
& rule to select I, either eliminates A or fails. Since A does not match F; the
proof which uses & to select F;, fails. If it fails then so does the whole proof, if it
consumes A then so does the conclusion. If F' does not match A then A matches
neither F nor F, and by induction the premise of the & — L rulefails.

o FF=_G —o F': Therdevant ruleis:

I'FF+ A THG,A
IT',G o FFAAN

L

Note that ' matches A iff F' matches A. By the induction hypothesis, the left
premise of the proof either fails or consumes A if F matches A. By the induction
hypothesis, the left premisefailsif F' does not match A.

3.8. LYGON 81

o F'=F, Fy: Therdevant ruleis

DFiEALA TV Fo b Ay A
FarlaFI?FQI_AlaA%AaA,

F matches A:

By the induction hypothesis both of the premises match and either eliminate their
A; or fail. If both eliminate their A; then so does the whole proof. If either fails
then so does the whole proof. If we choose to split A such that an A; does not
match F; then the proof will fail.

F does not match A:

By the induction hypothesis at |east one of the premises fails to match and hence
the proof fails.

The remaining cases are analogous. B

PROPOSITION 76

Forum~ satisfies criterion D 4.

Proof: The first condition follows since all of the right rules that are applicable are re-
versible. Consider now the proof of sequents of theformI" - A. We assume the sequent
has a proof. If this proof is simply an gpplication of the axiom inference then the proof
satisfies D 4, and we are done. Otherwise the proof begins by applying aleft rule to some
formulae FF € T'. According to lemma 74 there exists a proof which begins by com-
pletely decomposing F'. Since we know that this proof is successful we have by lemma
75 that F must match some sub-multiset of A and furthermore that the left-focused proof
step which decomposes F' must eliminate this sub-multiset. Thus Forum™~ satisfies the
left-focusing condition and hence satisfies D ,. B

CoROLLARY:Forum™ satisfies criteria Dg , C and Csirong-

So Forum satisfies most of the criteria. Aswe shall seein section 6.1 there are till
problems associated with allowing L to occur in the head of a clause.

3.8 Lygon

Lygon is derived by a systematic analysis. In terms of the class of formulae permitted

82 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

it isthe most general of the languages considered:
D:=A|l|L|D&D|DPR®D|G—oA|G|VaD|'D| DD

Gu=A|1|L|T|G®G|G8G|G9G|G&G|D —G|D"|VaG | WG |\G G
PROPOSITION 77

Lygon satisfies criterion A.
Proof: Obvious, since linear logic does not have weakening or contraction right. B

PROPOSITION 78

Lygon fails to satisfy criterion B.

Proof: The sequent | + 1 consists of a valid Lygon program and goal and its proof

necessarily involves a sub-proof with an empty goal. &

PROPOSITION 79

Lygon fails to satisfy criterion C'.

Proof: Consider the Lygon program (p(1)* & p(Q)J')L and the goal Jxp(x). According

to criterion C' we can begin the proof by applying 3-R; however, thisfails sincet cannot

be both 1 and 2 simultaneously.
p(1) Fpt) pR)Fp)
Fp(D)p(t) Fp(2)" (D)

Fp(1)" &p(2)",p(t)
(p()" &p(2)") Fp(t)

(p()*" &p(2)")" + Jup(x)

i-R

This sequent is provable however:

p(1) - p(1) p(2) - p(2)

Fp()hp(1) Fp(2),p(2)

Fp()*h, Jep(x) F p(2)T, Jap(a)
Fp(1)" &p(2)", Jap(a)
(p(1)" &p(2)")" + Aup(a)

Hence Lygon violates criterion C'. B
CoROLLARY:Lygon violates criteriaCyyong, Dg @nd D 4.

3.8. LYGON 83

ThusLygonfailsmost of our criterial Lygon allows program clausesto be of theform
G+ (encoded as G —). The problem is that such clauses can be resolved against at
anytime; there is no requirement that a particular goal be present. Asis pointed out on
page 34, allowing program clauses that can be resolved against without being invoked
explicitly by a goa causes problems. Specifically, a number of desirable properties of
logic programming languages (for instance that I' - Jx F is provableif and only if I -
Ft/x] isprovable for somet) are violated as a resullt.

We shall therefore consider avariant of Lygon - Lygon™ - which differs from Lygon
in that it removes the production D ::= 1 | G*. We will also consider Lygon~ which
has a limited notion of program clause corresponding to the BNF:

D:=WVz(G—-A)|A

Lygon~ alsoomitsthe possibility for controlled weakening and contraction of goalswhich
is afforded by formulae of the form ?G.

Gu=A|1|L|T|GR®G|GDG|G®G|G&G|D—-G|D"|VaG | 3G |G

Asdiscussed earlier it is possible to make proofs containing replication and deletion of
such formulae acceptable with a slight modification to the definition of Dg. Lygon™ is
closest to the current Lygon implementation [146, 147] (see aso section 5.1).

PROPOSITION 80

Lygon* and Lygon~ satisfy criteria A.

Proof: Obvious. B

PROPOSITION 81

Lygon* satisfies criterion B.

Proof: Proof by induction. In order to be a provable axiom, a sequent must have a non-
empty goal - since Lygon*- programs cannot contain O or 1. Each of the applicable
left rules satisfies the condition that if the conclusion has an empty goal then so does
apremise. B

PROPOSITION 82

Lygon~ satisfies criterion B.

Proof: Simpleinduction. &

84 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

PROPOSITION 83

Lygon™ and Lygon™ fail to satisfy criterion Ci,on,-

Proof: Consider the sequent - 3xp(z), Va(p(z) — L). R
COROLLARY:Lygon* and Lygon~ fail to satisfy criterion D 4.

PROPOSITION 84

Lygon~ satisfies criterion Dy.

Proof: According to theorem 61, Lygon™ satisfies the left-focusing restriction. Observe
that the proof of a sequent of the formT" = C cannot begin with an Ax or left rule since
there are no atomsto guide the proof step. Hence, all sequents of theformI" - C arethe
conclusion of aright rule. B

COROLLARY:Lygon satisfies criterion C'.

PROPOSITION 85

Lygon* satisfies criterion C.

Proof: We need to show that for T" consisting of valid Lygon program clausesand 3x F" a
valid Lygon godl the sequent T + 3z F' is provable if and only if the sequentT + F[t/x]
is provable.

The only rules which can occur in a Lygon derivation and which do not permute up
past3 — R are& — R andV — R. Since the sequent we are considering for criterion C
does not have any other goals (that is, the succedent is a singleton multiset) we only need
to argue that the following scenarios cannot occur

T-VeF',30F T,rk
(VF') = r,[,I' - 3zF

I‘I—p&q,Ele F’,.rl—
(p&q) —r, I, T"F JzF

—L —L

Since Lygon*- satisfies criterion B the right premise cannot be proven and hence this
scenario isimpossible. Therefore, we can permute the3 — R rule down to the bottom of
the proof and thusT + 3xF isprovableif andonly if T' - F[t/x] is provable as desired.
|

PROPOSITION 86
Lygon* fails criterion Dg.
Proof: Thesequenta @ b - a ® b comprises a valid Lygon- program and a valid

3.9. APPLYING D4 AND Dg TO CLASSICAL LOGIC 85

Lygon* goal. It can only be proven by applying ® — L first. Since the goal is compound
thisviolates criterion Ds. R

Thisis symptomatic of the fact that Dg isageneralisation of uniformity and that the
notion of simplelocally LR used in Lygon (see[122] is not uniformity. The differences
are minor and relate to the following impermutabilities

e ® — Rabove® — L
o ® — RaboveC! - L
o1l Raovel—-LorW!—L

e | — IR above most left rules

The second and third of these are standard and are easily solved by introducing a“non-
linear” region into therulesasisdonein £ (figure 2.6 on page 13).

Thus with respect to the sequent rules for linear logic given in figure 2.4, Lygon is
not uniform; however, if as programmers we are prepared to think in terms of a dlightly
different set of ruleswhere, for example, ®-R can apply simple preprocessing to the left-
hand side of the sequent then Lygon regains its uniformity.

Weinvitethereader to consult [122] for thedetail sof the derivation and for thelogical
rulesinvolved.

3.9 Applying D4 and Dy to Classical Logic

All of the languages in the previous few sections have been based on linear logic. Itis
interesting to consider applying our criteria (specifically D4 and D) to classical logic.

We begin by reviewing existing relevant work.

Asfar aswe are aware there islittle existing work which applies the idea of unifor-
mity to determine (in a proof theoretical manner) a logic programming language based
on classical logic.

In [55] the criteria D,; and D, (introduced in the next section) are used to derive
logic programming languages based on classical logic. The conclusions drawn in the
paper are that:

86 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

1. D,,.. doesnot produce any non-trivial languages that do not also satisfy D,;.
2. Thefollowing languages satisfy criterion D,

A:
D:=A|Y2D|DAND|DVD|-G|G—D

Gu=A|G|GANG|DVG|-D|D—G

D:=A|V2D|DAD|-G|G—D
Gu=A|32G |V2G |GANG|DVG

3. Thelanguages A and B violate goal directednessin that they permit proofs where
the (atomic) goal isirrelevant.

“ Thus it seems that the completeness of goal-directed provability is a
signpost rather than a definitive criterion in classical logic. For exam-
ple, when negations are allowed in programs, asin both existential-free
formulae and flat definite formulae, the goal may not be actually “ rele-
vant” tothe proof, such asinthe sequent p, —p - ¢. Whilstitistruethat
this sequent has a right-reductive[i.e. I' = A, C isthe conclusion of a
right rule] proof, it isclear that thereis nothing about this proof that is
peculiar to ¢, and so it seems philosophically difficult to describe this
proof as goal-directed. Hence it would seem that stronger restrictions
than goal-directed [actually uniform] provability need to be placed on
the class of proofsin order to deter minelogic programming languages’

([55, last paragraph, section 5]).

A consequence of observation (3) isthat A and B both fail to satisfy the left-focusing
condition and hence the languages fail to satisfy D4 and Ds.

In [114, 115] Nadathur and Loveland examine the application of uniformity to dis-
junctive logic programming. They conclude that for the language

3.9. APPLYING D4 AND Dg TO CLASSICAL LOGIC 87

C:
D:=A|32D |V2D |DAD|DVD|G—D

Gu=A |G |GANG|GVG

thesequent I' - G hasaclassical proof if and only if the sequent =G, I" - G has a proof
inintuitionistic logic which is uniform.

It issimpleto show that C fails most of our criteria. The proof of the sequent p(a) Vv
p(b) F Jxp(x) violates all of our criteria except for criterion B.

The problem isthat although there exists an efficient method of proof search for C, it
does not confirm to auniform (asin goal directed) view of classical logic. Asinthe case
of Lygon we can view C as being uniform with respect to a different set of rules. In this
case the logic would require the rule

I'E Flty/z],..., Flt,/z], A
I'FdxF, A

3 —R

We shall return to the issue of modifying the underlying logic in section 3.12.

We now look at deriving alogic programming language based on classical logic using
criteriaD 4 and Dg.

Firstly consider D 4. We require that al connectives that can occur topmost on the
right side of the sequent permute over each other. The only impermutability is3 — R
which does not permute down past V — R, 3 — L and V — L. Thus our language cannot
make use of thesethreerulesif weretain 93— R. Additionally we have seen that allowing
D ::= G causes problems. This gives us the following language, which we dub ALK
(Asynchronous language based on LK) (pronounced “elk”)

D:=A|DAD|V2D |G —D

Gu=A|GAG|GVG |G |D—G|-D

Note that the connectives which move formul ae between sides have sub-formulae which
are appropriate for “other” side(eg. G :=D — G | =D).

88 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Note that although the syntax is similar to hereditary Harrop formulae [54, 105] the
semanticsis different since the proof rules are those of classical logic. For example, in-
tuitionistically, p VV (p — ¢) isunprovable but classically we have a proof:

p—l—pr o
PEp.q n
Fp,p—q R
FpV(p—q)

Although the goal ¢ isirrelevant the goal p is used to guide the proof. Thusthe proof is
goal-directed at all times.

Observethat ALK isjust A with the problematic production (D ::= —G) removed.
We begin by defining anotion of matching. In the following welet F' be the selected
program clause and A an atomic goal.

DEFINITION 27
The atom A matches the ALK program clause F' iff

e Fisatomicandisequal to A.
e ['=F, N F, and A matches at |east one of the F;
o ['=G — F" and A matches "

o ['=VaF'" and A matches F’

LEMMA 87

Consider aproof step which decomposesthe ALK program clause F inthesequentT', F' +
A, A where A isatomic. If A matches F' then the proof step succeeds, eliminating A; oth-
erwise, if F' does not match A then the proof step fails.

Proof: Induction on the structure of F'.

e Fisatomic: If F' matches A then the only relevant rule is the axiom rule which
succeeds, consuming A. If F' does not match with A then the axiom rule cannot
be applied and the proof fails.

3.9. APPLYING D4 AND Dg TO CLASSICAL LOGIC 89

e F'= F\ N\ Fy: If F matches A then without |oss of generality let A match F, and
not match F,. Then the premise of the A inferenceisT’, Fy, F>, - A, A and by the
induction hypothesisits proof eliminates A. If F' doesnot match A then A matches
nether F nor F, and by induction the premise of the A — L rulefails.

o ['=G — F': Therdlevant ruleis:

I"FA TFG
TIGSFFA

L

If A matches F' then it must match F' and hence by the induction hypothesis the
left premiseis provable and hence A is eliminated. If A does not match F' then it
also failsto match F' and hence by the induction hypothesis the left premise of the
inference fails.

The remaining case is analogous.

PROPOSITION 88

The language ALK satisfies criterion D 4.

Proof: All of theright connectives permute down, thusthefirst condition (that there exist
a proof where any sequent of theformT" + A, C (whereC consists of compound formu-
lae) isthe conclusion of aright rule) holds. The second condition of criterion D 4 follows
fromlemma87. &

COROLLARY:ALK also satisfies criteria Dg, C, Cigyong @nd A.

We now consider applying Dg in order to determine alogic programming language
based on classical logic. Obviously ALK satisfies Ds. The interesting languages are
those which satisfy Dg but not D 4. Consider a language which satisfies Dg. Accord-
ing to proposition 59 if all the right connectives permute then the language al so satisfies
criterion D 4. Hence, in order for the language to satisfy Dy but not D 4 it must contain
an impermutable pair of right connectives. For classical logic the only non-permutable
pair of right connectives are 4 and V. Additionally, we would like a useful language to
generalise Horn clauses. Thus, aminimal language which generalises Horn clauses and
satisfies Dg but not D4 is:

D:=A|G— A|VYaD Gu=A|GAG|3xG |VzG

90 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

However, as the following proof demonstrates, even this language violates criteria
Dy and Dg

p(e) Fp(c)
ple) Fp(c). g W; _};
p(e) - 3ap(x), q L op
E3upe),p(c) g T, PBIERE) o
- Jzp(z), Vo (p(z) = q) p@3) F Jopla) —
(Vz(p(x) = q)) — p(3) F Jzp(x)

The sequent (Vz(p(x) — ¢)) — p(3) - Jzp(z) isprovable but thereis no single value
of = for which it is provable. This violates criterion C' (and hence criteria D4 and Dy
since D4 ~» Dg ~~ ('). By observation the language used in the proof is

D:=A|Gg— A Gu=A|JzA|VzA|A— A

Sincewewould like alogic programming language to generalise Horn clausesit follows
that we cannot have both V — R and — — R in the language and thus, since we desire to
haveV — R, we must omit — — R from the language.

For the same reason we must also omit G ::= —D. Aswas the case for ALK we
cannot allow the proof to make use of therules3 — L, vV — L and = — L and hence we
have the following language which we dub SLK (Synchronous language based on LK)
(pronounced “silk™)

D:=A|DAD|Va2D |G — D

Gu=A|GANG|GVG|TxG | VG

This language however satisfies criterion D 4!
That this should be case despite the possibility of applying both9 — RandV — R is
explained by the following lemma.

LEMMA 89 (LEMMA 3 OF [55])
LetT" and A be respectively a program and goal in SLK. ThenT" = A is provable iff
[' = F isprovablefor some F € A.

What is happening is that the omission of — —R and — — R prevents the multiple
goals from interacting.

3.10. OTHER WORK 91

Thus our results confirm those of [55] - there do not seem to be any interesting lan-
guages based on classical logic which satisfy D but not D 4. Thisshould not be surpris-
ing - essentially what thissaysisthat classical logic doesnot have any connectiveswhich
are useful for alogic programmer and whose use is made difficult by impermutabilities.
More precisely, allowingV in goalsand v and 3 in programs does not appear to be useful
to alogic programmer.

3.10 Other Work

In this section we look at how this work ties in with previous work in uniformity and
the characterisation of logic programming languages. An important goal isto suggest a
common terminol ogy.

As mentioned earlier the seminal work in this areais [112] where the original def-
inition of uniformity is presented. Since uniformity works reasonably well in a single
conclusion setting there has been little research on extending it until the need arose for a
multiple conclusion generalisation.

In the absence of a notion of atom-guided proof search, the options that have been
considered in order to extend uniformity to a multiple conclusion setting [55, 106, 140]
are:

D, . For asequent of theform ' - C, A or " - C there exist proofswhere the first step
introduces the topmost connective of F for all F' € C.

Dyome - For asequent of theform ' = C, A or " - C there exist proofs where the first step
introduces the topmost connective of F' for some F' € C.

In the absence of a notion of atom-directed proof search it is not possible to allow res-
olution to occur while there are compound goals, and thus D, is not useful since, as
we have seen, alowing impermutable rules requires that we allow resolution to occur
before decomposition in certain cases. For example, the following proof necessarily vi-

92 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

olates D, e

(OF a0 O
RO RGN
Va(g(z) B r(x)) - q(c),r(c)
Va(g(z) % r(z)) F g(c), Jar(z)
pkp Va(q(x) e r(x)) - Yeq(z), Jor(x) .
Va(q(x) ® r(2)), (Yzq(z)) —o p = p, Jzr(2)

V—-R
—L

One solutionisto disallow — —L; however this does not yield a useful logic program-
ming language. The obvious conclusion isthat criterion D,,,,. isnot useful. Indeed, in
the absence of any notion of atom-guided proof search, the only generalisation of unifor-
mity to the multiple conclusioned settingis D,;. Aswe have seen, however, introducing
anotion of atom-guided proof search allows avariant of D;,,,. — Ds —to be useful.

PROPOSITION 90

DS 7") Dall
Proof: Obvious from definition. B

PrOPOSITION 91
Dy~ Dy
Proof: Obvious from definition. B

PROPOSITION 92

Dy Dg , Doy 4 Da
Proof: Thefollowing proof satisfies D, but violates Ds and D 4

FT,p qlq
qFq® T,p
0, (g®T) Fp

Note that if we remove the second condition from D 4 (which ssmply states that D 4
is guided by atoms where there are no compound goals) then we are left with D,;;; that
is

D, = Dy, + left-focusing

3.10. OTHER WORK 93

Figure 3.7 Relationships for Multiple Conclusion Criteria

B C A
st‘r{ng / s
Dy
AN
DA

3.10.1 Proposed Terminology

There has not been much work addressing the question of determining logic program-
ming languages. As aresult terminology is not standard. In particular the word “Uni-
form” has been used for different definitions and this overloading can and has caused
confusion and mis-communication.

In this section we propose some terminology which avoids confusion. Wewould like
to suggest thisterminol ogy as a possible standard. Onefeature of thisterminology isthat
it distinguishes between single and multiple conclusion logics - the term “uniform” is
defined as a property of single conclusion systemsonly.

Goal Directed - Thisisan intuitive, informal notion that requires that the proof search
process be guided by the goal.

Uniform - Thisistheoriginal definition in[112] which appliesto single conclusion sys-
tems. It corresponds to criterion Dy, on,g-

Fully Uniform - Uniformity with the addition of left-focusing. Appliesto single con-
clusion systems and corresponds to criterion F'.

Simple - Thisisone method of insisting that atoms guide the proof search process. Itis

94 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

used in [107] and requires that the right premise of the — — L rule be the conclu-
sion of an axiom rule.

L eft Focussed - Thisisanother method of allowing atomsto guide the proof search pro-
Ccess.

Locally LR - Thisisthe criterion used in [122] for defining Lygon. Although the pa-
per defines uniform as simple locally LR we fedl that this overloading is unde-
sirable since the two concepts are distinct. The locally LR criterion is similar to
synchronous uniformity (see below) extended to handle a number of other imper-
mutabilitiesin linear logic (for example ®-L below ®-R).

Synchronous Uniformity - This criterion is one of the two generalisations of unifor-
mity to the multiple conclusion setting. It allows resolution to occur before de-
composition thus allowing impermutable goal connectives to co-exist in alogic
programming language. It correspondsto criterion Dy.

Asynchronous Uniformity - This criterion is one of the two generalisations of unifor-
mity to the multiple conclusion setting. It insiststhat decomposition be given pri-
ority over resolution and as a consequence limits the language to use (relatively)
reversible connectivesin goals. It corresponds to criterion D 4.

3.11 Re-Deriving Lygon

Aswe have seen, the full Lygon language as presented in [122] fails most of the criteria
developed. We have introduced two subsets of Lygon — Lygont and Lygon . Thefirst
still fails criterion Dg; athough the failure is not as severe. Lygon~ satisfies all of the
appropriate criteria; however the class of program formulae permitted is rather impover-
ished.

Inthissectionweinformally but systematically derive an intermediate subset —Lygon, —
which satisfies criteria B and D and has aricher clause structure than Lygon™ .

We shall assume that goals can contain, as a minimum, ®, !, '2, 1 and 3. Aswe
shall see, the presence of ® and ! in goals allows us to simplify the structure of program

3.11. RE-DERIVING LYGON 95

clauses. Theconnectivep isessential for concurrency applicationsand Jisbasictologic
programming.
We can rule out at the outset the use of the following left inference rules:'?

3 and @. Both of the following sequents only have a proof which begins with a
left rule, thisviolates criterion Dy.

p(1) ®p(2) - Jzp(z) Jap(x) F Jop(z)

®. Aswe have seen, the sequent p ® ¢ - p ® ¢ presents a problem to uniform
provability.

- 7. There aretwo cases here. If 7 isalowed in goals then the sequent 7p +7p vio-
lates criterion Dg. Otherwise observe that the left ? rule can only be applied when
the goal is empty so the formulais either useless or involves an empty goal which
violates criterion B.

- 0. The sequent O - 1 has a single proof which applies aleft rule. Since 1 is not
an atom this proof is (technically) not uniform. In general alowing O — L to be
used seems to go against the idea of logic programming in that the goal becomes
irrelevant — any goal can be proven using 0 — L.

| directly violates criterion B.

1. Inthe sequent p & 1 F!1the! rule on the right cannot be applied until the 1 on
theleft iseliminated using itsrule.

Additionally, we cannot have nested occurrences of ! in programs — occurrences of !
must be at the top level. The problem with nested occurrences of ! isthat theright ! and
® rules require that all occurrences of ! be at the top level (in the case of the ® rule we
need to copy all non-linear formulage). If an occurrence of ! ontheleftisinasub-formula
then we may need to apply left rulesto expose it before being able to apply aright rule.

I3Note that we are ruling out left inference rules. The connectivesin question can occur in programs,
but they must occur in a negative context. For example, the program clause p <+ 3z(q @ r) offersno
difficulties to uniform provability.

96 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

For example, observe that a proof of the sequent ¢&!p - p ® p exists (the right proof
below) but that if we begin by applying the right rule—asrequired by criterion Ds —then
no proof can be found.

4 5 :
pr,fL pEp pFp
!pr'&_ plpFp®P S
q&ptp p bEFp®p
- —— 2 oL
q&pFp®p ©- I q&!pr®p&

Note that we could have used almost any left connectivein place of &.
Thisyields the following definition for Lygon, :

Gu=A|1l|L|T|GRG|GaG |GG |G&G | D — G| D | VG | I2G |IG |?G

D =D, | D
D,:=A|D,9D,|D,&D,|YD, |G — D,
Dl:T|A|D1@DZ|DZ&DZ|VIL‘DZ|Q—ODZ

We now proceed to demonstrate how the form of non-linear clauses can be simplified
without a loss of expressiveness.

Observe that the program clauses allowed in Lygon, are a subset of the Forum class
of program clauses'®. Asisobserved in[106] there exists the following normal form for
Forum program clauses:

D:=1(C; &...&C,) | (C; &...&CY)
Co=VT(GFr ... (G (A19...04,)))
where ¢~ isone of = or —. We can rewritethisby expanding F' = G as (!F') — G to

C:=VT(G —o... o (G — (A17®...79 A,)))

4Thisisaspecial caseof D — G.
15The two classes of formula are almost identical — the main difference is the absence of L in the
Lygon, class.

3.11. RE-DERIVING LYGON 97

G =g|g
Since Lygon, goals allow both @ and ! we can use the following equivalence to replace
nested implications with occurrences of ® in goals.
G —o...o(G —o(A12..9A4)=G®..0G") —o(A17®...0A,)
Thus we have the following normal form for Lygon, program clauses
D:=1(C1&...&Cy) | (C1 &...&CY)
Cu=VT(G — (A179...0 A))
Since!(Cy &...&Cy) = (ICh) ® ... ® (I1C,,) we can replace nonlinear occurrences
of C1 &... & C, with n separate clauses.
D:=(C1 &...&C,) |!IC
C:u=VT(G — (A179...0 A))

Note that unlike Forum we insist that n > 0, that is we do not allow program clauses of
theform G — L.
So, we can define Lygon, as consisting of the following class of formulae:

D:=(C&...&C,) | IC
C=VT(G — (A 9...9 A,))
Gu=A|1|L|T|G8G |GBG |GG |G&G |D — G| D6 |VagG | 3G |G |7G
We now proceed to prove that Lygon, satisfies criteria Dg and B.

LEMMA 93

LetT" and A berespectively multisetsof Lygon, program clauses and goal formulae such
thatT" = A isprovable. Then there exists a proof of I' = A where all Ieft rules are part

of a sequence which decomposes a single clause.

Proof: Observethat all of theleft inferenceruleswhich are goplicablein Lygon, derivations
are synchronous. Hence according to the focusing property [6] once we have applied a
left rule to a program formula we can continue to decompose that formula without aloss

of completeness. Furthermore, as observed in [6]:

16Thisisaspecial caseof D — G.

98 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

When anegative atom A+ isreached at the end of acritical focusing section,
the Identity must be used, so that A must be found in the rest of the sequent,
either as arestricted resource . . . or as an unrestricted resource. . .

Thus, once a program clause is decomposed to an atom on the left there is no loss of
completeness in requiring that the next rule be the axiom rule. B

In the following lemmawe let I be the selected program clause and A a multiset of
atomic goals. Note that here we are matching a program clause with a number of atoms.

DEFINITION 28
The multiset of atoms A matches the Lygon, program clause F' iff

e I isatomic, A consists of thesingle formulaA and A = F.

F=FF, A = A UA, andwehavethat A, matches F, and A, matches F.

F = F, & F, and A matches at |east one of the F;

o '=(G —o F'"and A matches F’
o ['=VaF'" and A matches F’
e F'=!F'"and A matches F'

For examplethe program clause IVZ(G — (4179 ...79 A,,)) ismatched precisely by
the multiset {A,,... , A, }.

In the following, when we say that “ the proof fails” we mean that it can not be com-
pleted with an axiom rule. In general, it may be possibleto compl ete the proof step using
other program clauses. However, once we have chosen to decompose a given program
clause, lemma 93 alows usto insist that the decomposing proof step terminate with an
axiom rule where the program clause reduces to an atom. Hence we can ignore possi-
ble completions of the proof step which involve other program clauses without a loss of
compl eteness.

LEMMA 94
Consider a proof step which decomposes the Lygon, program clause F' in the sequent
I, FF+ A, A where A consists of atomic formulae. If A matches F' then the proof step

3.11. RE-DERIVING LYGON 99

either eliminates A or fails; otherwise, if F' does not match A then the proof step fails.
Proof: We proceed by induction on the structure of F'. There are a number of possible
cases:

e F' jsatomic: Without aloss of completeness (lemma 93) the sequent must be the
conclusion of anaxiomrule. If F matches A then the multiset actually contains a
single atom A and the axiom rule either fails due to extraneous formulae or elimi-
nates A. If F' does not match A then either F' does not equal A or A contains the
wrong number of atoms. In either case the axiom rule cannot be applied.

e F' = F| & Fy: If F matches A then without loss of generality let A match F;
and not match F,. Then by the induction hypothesis, the proof which uses the left
& rule to select I, either eliminates A or fails. Since A does not match F the
proof which uses & to select F;, fails. If it fails then so does the whole proof, if it
consumes A then so does the conclusion. If F' does not match A then A matches
nether F nor F, and by induction the premise of the & — L rulefails.

o =G —o F': Therdevant ruleis:

I"FFA TFG,A
TG oFFAA

L

Note that F matches A iff F' matches A. By the induction hypothesis the left
premise of the proof either fails or consumes A if F' matches A. By the induction
hypothesis the left premisefails if F' does not match A.

e ['=F, F,: Therdevant ruleis

LR EALA T FE A A
FarlaFI?FQI_AlaA%AaA,

F matches A:

By the induction hypothesis both of the premises match and either eliminate their
A; or fail. If both eliminate their A; then so does the whole proof. If either fails
then so does the whole proof. If we choose to split A such that an A; does not
match F; then the proof will fail.

100 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

F does not match A:
By the induction hypothesis at |east one of the premises fails to match and hence
the proof fails.

The remaining cases are analogous. i

THEOREM 95

Lygon, satisfies criterion Dg.

Proof: LetT" and A be respectively multisets of Lygon, program clauses and goal for-
mulae such that I" - A is provable. Consider the proof of the sequent I' = A. There are
three cases depending on which inference rule the sequent is the conclusion of.

Case 1. The sequent is the conclusion of an axiom rule. In this case the proof satisfies
criterion Dyg.

Case 2: The sequent isthe conclusion of aright rule. In this case the proof satisfies cri-
terion Dg.

Case 3. The sequent isthe conclusion of aleft rule. The left ruleis applied to some for-
mulaF € T'. According to lemma 93 there exists a proof which decomposes F' using a
left-focused proof step. Since the sequent is provable we have by lemma 94 that F' must
match some sub-multiset of atoms A C A and furthermore that the left-focused proof
step decomposing F' eliminates A. Thus the second condition of Dy is satisfied. Con-
sider now the proof of a sequent of the form " + C where C contains only compound
formulae. We know that limiting the proof search process to using left-focussed proof
steps does not |ose completeness. Since a left-focused proof step cannot be successfully
performed when the goal does not contain any atoms, we have that a Lygon, goal not
containing any atomic formulae is provable if and only if there is a proof which begins
with aright rule. B

COROLLARY:Lygon, satisfies criteria A and C'.

THEOREM 96

Lygon, satisfies criterion B.

Proof: The only left rulesthat can occur in a proof of aLygon, program and goal are: !,
v, @, — and &. In each of theserules, if the premise of the rule has an empty goal then
S0 does at |east one premise. The only ruleswith no premises which allow an empty goal

3.12. DISCUSSION 101

ael — L and0 — L, and neither of these can occur in a Lygon, program. B

We compare Lygon, to other linear logic programming languages in chapter 6.

3.12 Discussion

We have seen how avariety of criteriafor characterising logic programming languages
relate to each other and how they apply to arange of logic programming languageswhich
have been proposed.

The four major conclusionsthat can be drawn from this chapter are that:

1. Logical equivalence can be abused.

2. Uniformity is apromising start, but it suffers (particularly in the multiple conclu-
sion setting) from not having atomic goal's guide the proof search process.

3. For thesingleconclusion setting, full uniformity presents animprovement over uni-
formity.

4. For multiple conclusion logics both synchronous and asynchronous uniformity are
useful as characterisers. The former yields richer languages and the latter yields a
permutable set of connectives.

The recognition of the need for atomic goals to guide the proof search and the intro-
duction of left-focused proof steps as a mechanism for achieving this are the key con-
tributions of this chapter. The introduction of left-focused proof stepsis a crucial step
which alows the definition of aworking version of synchronous uniformity.

In section 3.1 we identified four problems which uniformity suffers from:

1. Itisdefined for single conclusioned systems.
2. Itissensitiveto the presentation of the logic.
3. It does not constrain the proof of sequents with atomic goals.

4. It allowsfor the abuse of logical equivaence.

102 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Our proposed criteria solve the first and third problems. The abuse of logical equiva
lences remains a problem — since it is applied after a criterion has been used to derive a
logic programming language we need to consider the larger picture in order to be able
avoid this problem.

Sensitivity to the presentation of the logic is in general a problem (and we discuss
it further in section 3.12). However, the extreme case of one sided presentations can
be handled. If we do not allow | headed clauses (and note that criteria Dg excludes
| headed clauses (see page 64)) then the definition of left focusing can insist that A be
non-empty. This preventsthe use of aone sided presentation which only uses|eft rules.

Additionally, criteria D 4 does not allow the use of a one sided presentation which
only usesright rules. For example, consider theprogramandgoal ¢ — p,1 — (¢’97) -
p e r. Thissequent is provable in away which satisfies D 4:

ql—qAx rl—rAx
o—-—L —1
A qgertaq,r 1 I
pp &F 1—o(g®r)kq,r
— —L
q—p,l—o(qg®r)Ep,r R

q—opl—o(gor)Fper

Consider now the one-sided trandl ation of the sequent whichis- per, p*®q, 1@rt®qt.
This sequent is provable, but criterion D 4 requires that for any goal formula F' there is
aproof which begins by introducing the topmost connective of F'. Thisis not the case:

Fphper Felert®g
FpRrp®lert et

No matter how we distribute the formul ae between the two premisesof the ® rule, aproof
is not possible. Thus criterion D 4 avoids the problem of one sided presentations being
trivially logic programming languages.

Thereisanother more general approach to dealing with one sided presentations. Both
criteriaD 4, and D requirethat proofsof atomic goalsareleft-focused. Thisisessentially
just resolution and in order to apply it we need to be abl e to distinguish between programs
and goals. Note that D allowsimpermutabilities between goals, and so it is possible to
view aone sided presentation as consisting entirely of goals. Thisimpliesthat thereisno

3.12. DISCUSSION 103

program- the notion of aprogramiscodedintermsof goals. From an operational point of
view aprogram clauseispassiveandisonly “activated” when the appropriate atomic goal
is present. Encoding program clauses as goals makes them active and allows for more
proofs. In the example above the two sided proof given is the only one which satisfies
D, (or Dg). On the other hand the one sided presentation which encodes programs as
goals allows for anumber of different proofs which all satisfy Dg (but not D 4):

Az Ax Az Ax
I—r,rJ- I—q,qJ- ® 4 I—r,rJ- I—q,qJ- ®
e i
F1l T rgnrtegdt Fp,pt g, rt @ gt
T Az T o 1 ® 1 n o 1 ®
Fp,p Frgler-®q % F1 Fprp - ®qr- ®q %
Fprpt®qleort®qgt Fprpt®q,lort ®@qt
Fperpteelort@qt Fperptegleort®qt
Ax Ax
Fp,pt Fq, gt 5
For, et Fp,pt®q,qt “
1 T T o 1
H1 Fprp - ®qr-®q

Fporpt@qleort@qt
Fporpt®qloart®qgt

In asense having only goalsisan explicit request from the programmer for adifferent
semantics. Having the system transform the program and goal to a one-sided presenta-
tion is akin to the abuse of logical equivalencesin that the semantics of the program can
be changed — in this case the search space becomes larger which can lead to reduced ef-
ficiency, certain solutions being found later (and possibly not at all) etc.

As we have seen, alanguage is uniform or not with respect to a given set of rules.
In some cases (for example digunctive logic programming) changes to the logic affect
whether alanguageis considered to be alogic programming language. Aswith the use of
logical equivalencesthisraisesthe question: whenisit “sound” to “fiddle” with alogic?

An important question is to what extent the presentation of the logic can affect the
derivation of programming languages. It would be desirablefor different presentations of
thesamelogictoyield the samelanguage. Thisisnot thecasein genera (for example D 4
seemsto bemorerestrictivefor one sided presentations) but inthe exampleswe have seen

104 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

that changesto the language were fairly minor. We now show that in general, significant
changes to the language derived can be made by changing the presentation of alogic.

L et us consider as an exampl e the multiple conclusioned presentation of intuitionistic
logic presented in figure 2.3 on page 9. Since intuitionistic logic has seen afair amount
of work and some definite conclusions[56] thisis agood test.

Consider the proof of the sequent p V ¢ = p V ¢. Using the standard (single con-
clusioned) rules for intuitionistic logic this sequent has a proof but the proof must begin
by applying a left rule. Thus uniformity (and any of our extensions) will not deem the
sequent to be legal in alogic programming language.

On the other hand, using the multiple conclusioned rules we have a uniform proof:

L R
V—1L
pvarpa , p
pPVaFpVy

Thisindicates that the presentation of alogic can, in general, completely change the
logic programming language derived. Thereisroom for further work into the derivation
of logic programming languages. Thiswork islikely to go beyond uniformity and look
at the big picture.

The Big Picture

Let ustake astep back and consider the global picture. In programming there are anum-
ber of different levelsat which aprogram can beviewed. Theseare (i) the formal seman-
ticsleve, (ii) theimplementationlevel, and (iii) alevel in between whichthe programmer
uses to visualise the execution.

In some casesthe third logic is just one of the previous two but in general thisis not
the case. When the implementation makes use of sophisticated algorithms (for example,
lazy evauation for functional languages [74, 75], co-routining [116] or constraint solv-
ing [79] for logic programming languages, or indeed, lazy resource allocation for linear
logic programming languages) it becomes infeasible to use the implementation rules as
away of visualising execution. The formal semantics can be too high level to visualise
execution — for example issues of efficiency — both time and space — are often ignored.

3.12. DISCUSSION 105

When we consider designing alogic programming language, we should consider these
three levels. In the context of logic programming these are expressed as logics:

1. A semanticlogic,
2. A visualisation logic, and

3. An execution logic.

The semantic logic istypically the standard sequent calculus rulesfor thelogic. It is
used to give adeclarative semanticsto thelanguage. Thislogicisusedto prove properties
of programs and to construct tools such as program analysers, partial evaluators etc.

The execution logic must be “tolerably efficient”. Thisincludesfor examplethe han-
dling of 3 — R by unification and the handling of ® — R by alazy resource allocation
mechanism. As a rough guide the application of a rule should not require an infinite
(3 — R) or exponential (® — R) choice.

Thevisualisation logic isused by the programmer to picture the execution of the pro-
gram. When the programmer asks the system “how was this answer derived?’ the an-
swer isexpressed in terms of the visualisation logic. The essential property of thislogic
isits simplicity. | would like to suggest that the existence of the visualisation logic is
what distinguisheslogic programming fromtheorem proving. Note that the visualisation
logic does not need to be efficient — for example when visualising the execution of Lygon
programsit is natural to work with the naive version of ®.

The design of characterisers which can be used to judge whether alogic subset can
be considered a programming language amountsto an investigation of the required rela-
tionship between these three logics.

For example, uniformity requires that the visualisation logic be the semantic logic
limited to agoal-directed proof search strategy. There does not seem to be agood reason
why moregeneral visualisationlogicsare not feasible. Indeed, for certain languages(e.g.
Lygon and digunctive logic programming) they are highly desirable.

Wewould liketo suggest that the execution logic should berelated to the visualisation
logic at theinferencelevel. That is, if

LEA
PN

106 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

is an inference rule in the visualisation logic then there is an essentially equivalent set
of inference steps in the execution logic. Conversely, any proof in the execution logic
should be able to be viewed as a collection of proof steps each of which corresponds to
an inference at the visualisation level.

This strong relationship between the execution and visualisation logicsisrequired so
that the programmer can use the visualisation logic to debug programs being executed
by the execution logic. This requirement prevents arbitrary theorem provers from being
considered as logic programming languages. On the other hand, we see no obvious
reason why the relationship between the semantic and visualisation logics needs to be
any stronger than the theorem leve, that is, that there is a proof of I' - A using the
semantic logic if and only if thereis a proof of the same sequent using the visualisation
logic.

There isroom for further work in thisarea. The fundamental question of what con-
stitutes a logic programming languages is still not well understood.

107

Chapter 4
| mplementation | ssues

Implementing Lygon isnontrivial. In addition to the usual issuesfor logic programming
languages there are a number of new ones. Two particular problems stand ouit:

1. In searching for a proof of agoal involving the connective ® we need to split the
context between the two subproofs. Thisis done in the reduction of the ® rule.
Since logic programming languages search for proofs in a bottom up fashion this
splitting is nondeterministic and inefficient if done naively.

2. Consider searching for aproof of amultipleconclusioned goal. Eachtimeaninfer-
enceruleisto be applied we must first select theformulathat isto be reduced. This
formulais the active formula. If done naively this selection process implies that
any proof involving multiple conclusions has significantly more non-determinism
than necessary.

This chapter discussesthese two issues and presents solutionsto them. The solutions
presented have been incorporated in the current implementation of Lygon.

We begin by tackling the first problem. We show how the lazy implementation of
the multiplicative connectives (specifically ®) cannot be done ssmply by altering the ap-
propriate rule for ®, but requires the entire system to be redesigned, and particular care
taken with the rulesfor & and T. Essentially thisis done by adding some new markers
to formulae, to indicate whether the formulahas been used in another part of the proof or
not, and hence determine what resources are available to the current branch of the proof.

108 CHAPTER 4. IMPLEMENTATION ISSUES

This process may be thought of as a problem of resource management, in that one of the
key requirements of the proof search process is to allocate each formula to a branch of
the proof. Clearly any implementation of Lygon will need to do thisin a deterministic
manner, i.e., follow aparticular allocation strategy. It isthetechnicalities associated with
this problem that is the main contribution of this chapter.

This chapter is organized asfollows. In section 4.1 we discuss the problems of using
alazy approach to the multiplicative connectives, and how this affects other parts of the
system. In the following two sections we prove that the resulting lazy system is sound
and compl ete with respect to the standard one sided sequent calculus for linear logic. In
section 4.4 we discuss the second problem and note that the observationsin [6, 44] can
be used to provide a heuristic that (partially) solves the second problem. We conclude
the chapter with a brief discussion.

4.1 TheChallengeof Being Lazy

The standard formul ation of theinferencerulesfor linear logic have a significant amount
of nondeterminism. Some of this nondeterminism is unavoidable and does not create
efficiency problems; for example the & rule. Consider however the ® rule:

T-FA SFG,E
ISFFRGA,Z

When this rule is applied bottom up, that is from root to leaves, we need to divide the
formulae in the sequent between the two sub-branches. This division can be donein a
number of ways which is exponentia in the number of formulae. Hence a naive imple-
mentation which backtracks through all possibilitiesis not feasible.

However it is possible to modify the ® rule so the division of formulae between sub-
branches is done efficiently. The key ideaisthat all formulae are passed to the first sub-
branch. Unused formulae are returned and then passed to the second sub-branch. We
refer to this mechanism as lazy splitting ([69] refer to this mechanism as an input output
model of resource consumption). Consider as an examplethe proof of p’e (1® p*). We
begin by using the s rule to break off the p yielding p, 1 ® p*. We then process the | eft

4.1. THE CHALLENGE OF BEING LAZY 109

side of the ® rule —we pass it the rest of the context (i.e. the p). We are now trying to
prove p, 1. This succeeds with the p as unused residue. The p is then passed to the right
branch of the ® rule: p, p+ which isjust an instance of the axiom rule.

The details of this solution however are not without a certain amount of subtlety —if
care is not taken, soundness can be compromised. We begin by considering a fragment
of Lygon excluding T. Lazy splitting for this fragment isrelatively straightforward; the
real subtlety ariseswhen T isre-introduced.

Consider theformula (ps 1) ® p*. Clearly it isnot provable asthe following attempt

shows
F1p o
F1lep Fpt
F(1®p) @pt

Consider now a naive formulation of lazy splitting. Instead of a sequent of theformt+ T"
we use the notation I' = A with the intention that the A are the excess formulae being
returned unused. A successful proof cannot have excess resources and hence we require
that itsroot be of theform I = ().

The standard sequent rules are modified as follows. The axiom rules are modified
to return unused formulae. Note that since the treatment of the nonlinear region (¢) is
unchanged from £ we elidethe “§ :” from the rules.

—A -
T IToT 1

The unary logical rules are modified to pass on returned formulae

FG, T = A
FoGTl=A

Finaly, the ® rule passes the excess from the left sub-branch into the right sub-branch.

FIT=A G A=A
Fe G TI'=A

Using these rules we find however that (p 2 1) ® p* is derivable!

1
Lp=p
LP=p A
1’?p:>p)? p,p- =10 ®x
(Lep)@pt=10

110 CHAPTER 4. IMPLEMENTATION ISSUES

The reason we have lost soundnessis that not all formulae should be returnable. For
lazy splitting to be valid we must not return formul ae which were not present in the con-
clusion of the ® rule. In the unsound proof above, p should not be returned by the 1 rule
since it wasintroduced above the ® rule.

To prevent this problem we must keep track of which formulae are returnable. We
do this by tagging a returnable formula with a subscript 1. Untagged formulae must be
consumed in the current branch of the proof. Tagged formulae may be returned from the
current branch. The revised rules can only pass on unused formulae if they are tagged:

A -
p,pL,I‘1:>F1 v 1;F1:>F11

Therevised @ rule
FT,=A, GA=A
FeG,I'= A

marks al existing formulae as returnable and then passes them to the first sub-branch.
Note that the formulae returned from the first sub-branch must have their tags removed
before being passed to the second sub-branch. This ensures that formulae which are un-
tagged in the conclusion of the ® rule cannot be returned unused from the right premise
and hence from the conclusion. Asan example consider theformula (p s (1® 1)) @ p*
whichisclearly unprovablein L. If weneglect to have our lazy ® rulestrip away thetags
before passing formul ae to the right premise we lose soundness since the above formula
has a derivation:

P, 1= m . p,1=p 1
p,1®1:>p1 :
pe(1l®1) =p pL,pt =
(pe(1ll)ept=

®

Aside: A seemingly plausible aternative to having the ® rule do the checking isto
have the @ rule refuse to construct F' e G if either F' or G occur in the residue. To see
that thisis unworkable consider the derivation of (p’2 (1® 1)) ® ¢*) where the program
contains the single clause p + ¢ (which could be encoded on the right hand side of the

4.1. THE CHALLENGE OF BEING LAZY 111

sequent as ? (p* ® q).

7,1=q 1 ,1=q .
,11=q
p,1®1:>q1 :

P2 (11l =q¢ @,qt =
re(lel)®q =

Program

®

Note that the *® rule has no way to detect that anything untoward is happening. This
derivation is essentially the same as the previous one and is equally invalid. End Aside.
We now introduce an additional rule. The Useruleisused to claim aformulafor use

in the current sub-branch by stripping off the tags that allow it to be passed out of the
current sub-branch.

F'T'= A

FI=A Use
where F’ represents F' with all tags removed.

EXAMPLE 1

1

, =
%Use L
PP = 1

1
®
pp-R1l=

Note that we have to alow nestable tags in order to handle nested occurrences of ®.
The ® rule adds and removes a single tag. We generalise the notation I'; to any natural
number.

EXAMPLE 2
Theformula((p7® (1® p*)) ® q) ® ¢+ isprovable

1 T Az

F1
Fp,1l®pt -
Fpe (1®ph) Fq,qt
F(pe(1oph)®@q,q"
F((pe(leph)®q®q"

Fp,p

Y

Ax

112 CHAPTER 4. IMPLEMENTATION ISSUES

Using lazy splitting we obtain the following proof which uses “nested” tags.

1 Ax
17p1,q2lz>p1,q2l paplaqllz>qlL ®

p,leopt, ¢ = ¢
p®(1@ph), ¢ = q ¢, q" =
(pe(1l®pH)®qq" =
(p2(1®pH)®q9) g =

EXAMPLE 3
The similar formula ((¢* ® (1 ® p*)) ® q) & p isnot provable. That the lazy splitting
proof fails is dependent on the use of nested tags.

1
s Lp = qipe T phpn, gt =7

¢ 1@ pt p =7 -
¢-w (1@ pt),pr =7 q,?7 =T
("2 (1op")®qp=T
((¢-=(1ep))ogep=T

®

Note that in the leaf p*, p,, ¢ we cannot return the q sinceit is not tagged.

We have seen therulesfor ®, %2 and 1. Therulesfor@, 7, L ,V, 3 aresimilar to
2. The Az ruleissimilar to 1. When we apply ! we must ensure that there are no other
(linear) formulae. Thuswe force all excessformulaeto bereturned. Inaway ! issimilar

to the Az and 1 rules.
F =

F T, =T,
EXAMPLE 4
The formula(('p) ® (p @ 1)) & p* isunprovable:

Ax
p=__, _ pp

p,pi =pi p®Lp-=
(Ip)® (p@l),pt =
()@ (pol)wpt=

The other logical rulewhichisaffected by thelazy splitting mechanismisthe & rule:

FI'==Z GTI'=Y%
F>'= A

4.1. THE CHALLENGE OF BEING LAZY 113

Thisrule hasthe constraintthat = = ¥ = A. Thisenforces the constraint in the non-
lazy & rulethat the two sub-branches have the same context. Notethat we prefer to have
an explicit constraint since in the next section this constraint will need to be modified.
EXAMPLE 5
We now consider a slightly larger example. Consider the program p < q. Thisis trans-
lated as!(q —o p) ontheleft hand side. Expressing—o intermsof >3 we obtain!(q* s p).
Since we work with a single sided sequent cal culus we negate the formul ae so we can put
it ontheright. Negating the formulayields? (p* ® q). Our query is(p & 1) 2 (¢ & L).
The proof illustrates the handling of nonlinear formulae and the & rule. Recall that
thenotation$: T' = A represents 70, " = A.

preq:php(ctel), = (¢-al), A pL@q:q,qL;‘A(E
pregiphpn@el), = @Grel), pL®q:q,qL®L=>® ;oi(z‘§>q:1:>1
P®a:p8apr el preg:lls
pl®q:p,qL®J_:> ’ pl®q:1,qlEBJ_:>&

prRq:p&lgte L= ”
2t ®q),p&lgtel =
2pt®q),(p&1)w (¢t L) =

The ruleswe have seen form the working core of the lazy splitting inference rulesfor
the fragment of thelogic excluding T. Looking at a complete proof and seeing sequents
of theform a;, b1, a = b, the reader may be left with the fedling that thereis still some
magic at work. Thisis not so; when a proof is being constructed bottom up, the right-
hand side of the arrow (=) isleft unbound on the way up and determined at the |eaves.
EXAMPLE 6
The construction of a proof for p*, ¢*,p ® q goes through the following steps (where
capital letters represent meta-variables)

1. Theroot of the proof is
P p®q=Y
2. We apply the® ruleto obtain

prap=X1 ¢, X =Y
pratp®q=Y

114 CHAPTER 4. IMPLEMENTATION ISSUES

3. Weredlise that we need p* in order to apply the axiom rule and so decide to Use
it.
phanp =X,
pf,qf,p:> X; ¢ g, X =Y
pPragp®q=Y

4. Wenow apply the axiom rule. The formulaq;- is returnable excess so wereturnit.
Thisbinds X .

Az

T 1 1
)) :>
p,41,p 1 Use

P, a4t p = qf ¢,q" =Y
prgtp®q=Y

5. We have finished the left sub-branch of the ® rule and now look at the right sub-
branch. We realise that we can immediately aoply the axiom rule. Since there are
no excess formulae, Y is bound to empty.

Az
prat.p = qf

Se
P, aip = qf ¢,q" =
ph gt p®q=

®

Adding T

The rules presented so far form a sound and complete collection of inference rules for
the fragment of the logic excluding T. These rules manage resources deterministically.
Thelazy splitting version of T involves a significant amount of subtlety and hasim-
plicationsfor the & rule which ends up becoming fairly complex.
Consider the standard inference

FT.T | FG.T
FToG, .Y

Therulefor T simply consumes all formulae. Consider however the lazy splitting ver-

4.1. THE CHALLENGE OF BEING LAZY 115

sion of the above inference

T,F1,21:>21T G,E:>
ACIERNDES

The application of the T rule must somehow know which formulae are not to be con-
sumed since they will be required elsewhere in the proof.

Note that the lazy splitting version of the T rule has to divide formulae between T
and the rest of the proof. This can be done in a number of ways which is exponential in
the number of formulae.

Although this sounds similar to the problem in the original ® rule there are two dif-
ferences. Firstly, it is not possible to nest T's, so a single non-nestable tag will suffice.
Secondly and more significantly, the direction is opposite — the first sub-branch of the ®
rule returns formulae which are unconsumed and which must be consumed by the sec-
ond sub-branch. The T rule on the other hand will consume all formulae by tagging them
appropriately then passing them on. The formulae passed on have been consumed by T
but —in case they should not have been — can be “unconsumed”.

We shall use a superscript question mark (e.g. I'") to tag formulae which have been
consumed by T and which can be*unconsumed” if necessary. Notethat untagged formu-
lae are simply consumed by the T rule since they cannot be returned for use el sewhere.

T,A,Fl :>Fr{ T

One might be tempted to define —7 in terms of existing connectives, viz. F* =
F @ L. Thereis however a subtle but important difference between the two. F* rep-
resents a formula which may have been consumed by T, thus F' is either consumed —
inwhich case it must not be used elsewhere — or unconsumed — in which case it must
be consistently accounted for.

F @ 1 on the other hand allows for some parts of the proof to choose F' and other
partsto choose L. Consider ((T ® (p & 1)) ® p*) whichisnot provablein the standard

116 CHAPTER 4. IMPLEMENTATION ISSUES

system as shown below

Az o
B b "Ly - p I—li&
FT l—p&l,pL@) =T, pt l—p&1®
FT® (p&1),pt FT®(p&1),pt o

F(T®(@p&l)wpt F(T®(p&l)wpt

Yetif weusep @ L inplaceof p’ it has aderivation:

—1
1=
A
p,pt = g 1,J_:>J‘69
p,pt® L= Lpl@Li&
T,pt = (pta@l), p&1lpt-e L= o

T®((p&l),pt =
(T (p&l)spt =

In addition to pointing out the difference between F* and F' & L this suggests that
the T rule cannot be simply added to the system since maintaining the consistent usage
of formulae of the form F* requires a measure of global information. Thus, rather than
having the axiom rules del ete consumed formulae which have turned out to be unneeded

Ax'

papla A?arl = F1

we must return the consumed formul ae which were unneeded, so that we can check that
different additive branches agree on which consumed formulae have had to be uncon-
sumed.

paplaA?arl = FlaA? A:L.

If we do not return the unused formul ae then we lose soundness, and we can derive
unprovable sequentssuch asp, ¢, T ® (p* & ¢*)

ExAMPLE 7
— A —————— AZ'
p, ¢, pt = pLq,q" =
7 7 1 Use 5 T Use
p.q,pt= phahat = o
PG, T = pl g pd\pt > = %

p.¢, T® (pt&qt) =

4.1. THE CHALLENGE OF BEING LAZY 117

We thus use Az rather than Ax’. In order to do this we must modify the unary rules
to pass on the returned formulae of the form F?. We also need to have alook at the two
binary rules— ® and &.

The ® rule does the usual passing from the left sub-branch to the right. The only
interesting point isthat it is possible for the left sub-branch to return formulae which do
not have a —,, tag. These formulae are of the form F* and they must be returned by the
conclusion of the ® inference without being passed to the right sub-branch. If thisis
not done, soundness is compromised. Consider the formula ((T ® 1) %@ p) ® p* which
is clearly unprovable. If we use alazy ® rule which passes these formulae to the right
premise before returning them then there is a derivation of thisformula:

T _ 1
T,p1 = p} 1,p" = p’ o
Te®lp=p p,p- =
(Tel)ep=)p p',pt =
(Te®1)wp @p-=

Use
®

Theintuition behind thisisthat aformulaof the form F; can bereturned from the current
branch for use elsewhere. The same is not true of formulae of the form F* - we cannot
passthem on for use el sewhere, they must be propagated down the proof. Theseformulae
(F") arereturned only to enablethe & ruleto enforce consistent consumption of formulae
by T rulesin both subproofs.

We now consider the & rule. Aswe shall seg, it ispossiblefor the residues of the two
premises of a & inference to be different. We need to determine when such a disagree-
ment is harmless and what the residue of the inference’s conclusion should be in these
situations.

The presence of aformulaof theform p!, inthe residue of asequent indicatesthat the
proof of the sequent has consumed p but that it could equally well be unconsumed. For
exampleif p;, ' = p! isprovablethen " and - T, p are both provable.

Consider now a premise of the & rule which has this property. The conclusion of
the & inference will have the property of being provable with or without p only if both
premises have the property.

In the following example theright premise has the property that both— T and- T, p
areprovable. However theleft premise does not havethis property ast p, p* isprovable

118 CHAPTER 4. IMPLEMENTATION ISSUES

but - p* isnot. Asaresult, the conclusion of the & inference does not have this property
ask pt & T,pisprovablebut - p* & T isnot.

EXAMPLE 8

php=

RN - T

p 7p1 = T7p1 :>p1 &
pr&T,p =X

Use

This sub-proof occurs in the proof of ((p* & T) ® 1) ® p and hence needs to be
derivable. Intuitively, since the conclusion of the inference needsthe p itsresidue should
be empty — this prevents a different proof branch from attempting to use p. Note that if
theright premisedid not have the property discussed then theinference would beinvalid.

Consider now thefollowing example, whichillustratesa&. inference wheretheresidues
of the premises disagree on aformula of the form F”.

EXAMPLE 9

T 1
T,p1 = p} 1,p" =p’ o
Tolp=p ptp=
(T®1l) &ptp=

Ax
&

The presence of p’ inT' = p’ indicates that p° was not unconsumed. The proof in
example 9 is valid since we can force the left premise to consume the p. This can be
done by having the residue of the conclusion be empty which rules out the possibility of
another proof branch unconsuming the p.

Asbefore, the reconciliation of the differences in the premise’sresidues requires that
we know whether the premise with an excess in itsresidue is able to accept the excess.
The local information present at the point of the & inference isinsufficient to determine
this. As examples 8 and 9 indicate, whether a sub-prof can accept extraformulaeis de-
termined by its structure.

We term (sub-)proofs that can accept additional formulae T-like (since such proofs
must contain an occurrence of the T inference). Inag& inference, whenever the premise’s
residues disagree we can reconcil e the disagreement if the premise with the larger residue

4.1. THE CHALLENGE OF BEING LAZY 119

isflexible —that is, if it is the conclusion of a T-like proof. If we have a disagreement
and no reconciliation is possible since the premise in questionsis not T-like (as occurs
in example 7) then the & inference fails.

In example 8 the disagreement is that the right premise has more in the residue than
the left premise. Since the right premiseis T-like we can reconcile by forcing the right
premise to consume p — that is, it can not offer the rest of the proof the possibility of
unconsuming p since the left premise of the & inference will fail if thisis done. The
reconciliation can simply be done by having the residue of the & rule be the intersection
of theresidues of its premises. In example 9 theleft premiseis T-like and reconciliation
ispossible. The residue of the conclusion is empty.

To be able to check whether reconciliation is possible we add tags to enable us to
track whether a given sequent is the conclusion of a T-like proof. We tag a sequent with
/true if the proof is T-likeand with / false if itisnot. The T ruleistagged /true, the
Az and 1rulesaretagged / false. Theunary rulespassonthetag. A ® rule’sconclusion
is T-likeif at least one of its premisesis. So, if the tags on the two premises are /x and
/y thetag on the conclusionis /x \ y. The conclusion of a & inferenceis T-likeif both
premises are. So, if the tags on the two premisesare /x and /y the tag on the conclusion
is/xzAy.

The proof in example 8 isvalid since theright premise would be [abelled with /true.
Theleft premise of the & inference in example 9 would also be labelled with /true.

One minor wrinkleis that while intersection must agree on the formulae, it may not
agree on their tags. Specifically, the formulaein one premise may havea —* tag in addi-
tion to some —,, tags whereas those in the other premise may not have the — tag:

EXAMPLE 10

What value should we give to X in the following proof?

pl,T:H?r{ pL,1=pm
pl,T&1:>X

The solution isto pass on the — tag if both premises haveit and to strip it off if only
one of the premises hasit. This can be viewed as a sort of unification over tags.

120 CHAPTER 4. IMPLEMENTATION ISSUES

Thefina & rulein al itsglory may befoundinfigure4.1. In calculating the conclu-
sion’s residue it uses intersection on multisets of formulae and an operation “mintag”
which given two tagged formulae removes the — tag if exactly one of the formulae has
the tag and leaves the formul ae unchanged otherwise.

Our final example shows the & and T rules in action. Note that the r in the right
premise of the & ruleisexcess; however the premisein question istagged with /¢rue so
the proof isvalid.

EXAMPLE 11

m, II,
? 7 7 T ?7 7 7 &
T,p1, 1,71 = p1,qi, i ftrue — (rt@ph) & (T @p*),p",¢",r" = ¢'/ false o
TR ((r*®@ph) &(T®ph)),p,q,r = ¢'/true

wherell, is

7?7 2 Az ?
rtpl gl = Dl i/ false o ph.p. ¢ = ¢’/ false
rtpi,ai, i = pi,qi/ false php' ¢ = q'/false
1 1 7 7 7 ? ®
rt@ptp’ d", 1t = ¢"/ false

se

andH2 is

Az
php,d T = ¢f 't false

Use
.00, ¢, = plal,rlftrue — ptp' ' rt = ¢ 7 false o

Teph ' ¢, r" = ¢, r'/true

DEFINITION 29 (NOTATION)
In the remainder of this chapter we shall need to refer to different multisets of formulae
based on their tags. The following notation is used:

e Capitd letters (A, B, C, D) are used to represent multisets of formulae.

e We use subscripts numbers and a possible superscript “?” to indicate which tags
characterise the multiset. For example A, consists of all formulae of the form p,.

e We assume that n is the maximum number of tags occurring in a given proof. A
commonidiomisA, A, ..., A, which coversall formulae in a sequent which do
not have - tags.

4.1. THE CHALLENGE OF BEING LAZY 121

e Weuseat superscript to represent both formulae witha—" tag and formulae with-
out. At € A;U A

e We use an x subscript to represent all subscript tags from 1 upwards.
A, @ A UA U UA,

e For uniformity we shall sometimes write A,. Thisis equivalent to A.

e We shall sometimes need to refer to a multiset and modify its tags. A superscript
modifier is used to denote this. For example if A, isthe multiset {p,, (¢ & r),}
then A3 isthe multiset {p}, (¢ & r),} and A" isthe multiset {ps, (q &)}

EXAMPLE 12
Suppose we have a sequent containing the following formul ae:

747
b,q1,T 7t2781714

then the following hold:
A=p At = 4l

_ +1 _
A = q, 51 A1 = ({2,952
? ? ? ?
A =7’ AT = ry
?7 7 7—1 47
AQ = 1 AQ =t

Al =0 ATt =)

122 CHAPTER 4. IMPLEMENTATION ISSUES

Figure 4.1 The Fina System (M)

We define —' to remove al tags. Thus (F!) = F. We shal aso need to define mintag:
mintag(x,y) def z, if z and y areidentical formulaewith the same tags
mintag(Fy, F,) g,

mintag(F,, F}) g,

The & ruleisonly applicableif the following four side conditions hold:
1 %t Y fmintag(F,G)|F € It AG € EL A F+? = G+7}

o= ellruz=";. We sometimes refer to = U,
? ' (F|F e 7 UET}. Weshal imesreferto s %' st U ¥?

2. X
3. If zis/falsethen (I, IT7) C (=, %7).

4. Ifyis/falsethen (2t ,Z7) C (X¢,%7).

AX 1
§:p,pt, AL, B? = At B’ /false §:1, AL B" = At B"/false
§:T,AL B = C!,D"/x
T 1
§:T,T, AL B” = A" B” /true §: 1, AL B = CL, D" /x
§:FT, AL, B" = C'. D/« §:G,T,AL,B" = C!, D"z
@1 > — D2
5:FaGT AL B = Ct. D' /z 5:FaG,T,AL B = Ct, D /x
§:F=D"/x \ §:F,G,T,AL B" = C!,D"/z -
§:\F, At B" = Al B?/false §:FeGUT,AL B"= CL, D"z
§: Flt/z],T, AL, B" = CL,D?/x . §:Fly/z),T,AL, B" = Ct,D"/z
§:3xF,T,AL,B" = C,,D"/z §:VzF,T,AL, B" = C.,D"/z

wherey isnot freein T’

§,F:T,AL, B"= Ct,D"/x) F,§:FT AL B" = C! D"/z)
§?F,T, At B’ = Ot D' /z - F.6:T,At B? = Ct, D/«

§:F'.T A B" = C! D'/x o
§:F,0, AL B" = Ct. D’ Jx "

(&

§: F,[+ Tt+l D7+ = A+L I IT7+ 27/ 60 G, AL, T = S, 57 /y .
§:FoG,I,Tt T =3t v 2 /zvy

st

§:F>,TL T =%t Y /xAy

§:FI,LL I = 0L /e 6:GD LI > Sy

4.1. THE CHALLENGE OF BEING LAZY 123

The Rules

Having travelled through the evol ution of the deterministic ruleswe are now in aposition
to collect and categorise theresult. This categorisation will be of use ininduction proofs
in the following sections. By recognising the similarities among groups of rules we can
useinduction over therule groupsrather than the rulesthusreducing the number of cases.

Therules(M, giveninfigure4.1) fall broadly into four groups. Thefirst group com-
prises rules which are essentially unchanged. For examplethe £ rulefor ¢ is

0:F.G,T
0: FeG,T

and the M ruleis
§:F,G,IAL B" = C!,D"/x
§:FeG AL B"= CL, D"z

This rule (and the others in the first group) simply pass along the tagged formulae and
the returned residue. In thisgroup aretherulesfor L, @, ,3,V,7and ?D.

The second group of rules comprises the axioms. These rules instantiate the residue
to the tagged formulae and thetag to / false. Note that weinclude! as an axiom since it
behaves like one.

A §:a= D"/x '
5:ppl, AL B’ = AL B/ false 6 :a, AL, B’ = AL B'/false

This group comprises Az , 1and!.

Both groups of rules so far have asimplerelationship to the £ rules. Thethird group
of rulescomprisestheremaining rulesin £ which are significantly changed in M. These
rulesare T , & and ®.

Finaly the Use rule does not have a counterpart in £ and we place this rule into a
group of itsown.

We shall seelater on (theorem 119) that this system manages resources deterministi-
cally, and as such it can be implemented efficiently.

124 CHAPTER 4. IMPLEMENTATION ISSUES

4.2 Soundness

In this section we prove that our deterministic system (M) is sound with respect to the
one-sided sequent calculus for linear logic (£).

The basic idea behind the soundness proof is to treat C¢, D in the M sequent § :
I, AL B" = C!, D" asexcess and “subtract” them from A%, B” to obtain the £ sequent
6:T,((A, B)—(C, D)). Thecoreof the soundness proof is an agorithm which converts
an M proof to an £ proof. Thisagorithm will be shown to map any M proof into an £
proof; thus showing the soundness of M with respect to L.

This approach is complicated by the fact that the subtraction used is not necessarily
valid - adthough we show that C! is a sub-multiset of A?, this does not hold for D* and
B". We observe that whenever D* ¢ B’

1. A T ruleisinvolved (lemma 100)
2. The sequent islabelled with /true (lemma101)

We then define a notion of backpatching. Intuitively, wherever D ¢ B* we augment
the sequent by adding D? to the left of the = thus fixing the imbalance. In order for the
augmented sequent to fit into the proof we need to propagate. Propagation simply adds
the same formulae to the premises until a T ruleisreached. We show that backpatching
and propagation

1. Always succeed (lemma 103)
2. Produce a proof where D isasub-multiset of B* (lemma 106)

For therest of thissectionwewill view sequentsas consisting of thefollowing groups
of formulae:

? ?

6:Ag, Ay,... Ay, BS B!, ... B =C,,...,C,,Dl,... D

b n’

Dy
For the purposes of induction arguments we shall use induction over therules1, !,

2, T,®,&andUse. Theother rulesare similar to either 1 or . Wewrite X C Y to
indicatethat X iseither equal to or isasub-multiset of Y. Thiscomparison ignorestags,
thatis X C Y iff X' C Y’ where (F!) & F.

4.2. SOUNDNESS 125

LEMMA 97

In all sequents occurring in M proofs we havethat C;, D; C A;, B; and C; C A; where
1> 1.

Proof: We use induction on the structure of the proof.

Therulesland Ax:

These rules are base cases for the induction. In both cases the C; are the A; and the D;
are the B;. Hence the hypothesistrivially holds.

The T rule

We can writethe T inference as follows

? ? ? ? ? p? p? 7 T
§:T,1Ay, ... A,B,B],... B.=A{",... A" B" B, ...,B’

n

Thus, the C; are empty, as all formulae in the residue have a—"' tag; and the D; are the
union of the corresponding A; and B;. HenceC; = () C A; andC;, D; = A", B; C
A;, B; asdesired.
Theg rule
The desired property holds for the premise by the induction hypothesis. Observethat the
differences between the premise and the conclusion do not involve tagged formul ae, and
hence the desired property holds in the conclusion of the inference.
TheUserule
The Use rule can be written as follows
F,Ay,...A.,B' Bl,... BS=>Cy,...,C,,D" D} ... D]
F' Ay, .. A, B"B!,... B:=0(C,...,C, D" D .., D!

There are a number of cases:

1. TheformulabeingUsed istagged F”. In thiscasethereis no effect onthe A; or B;
and since, by the induction hypothesis, the property holds for the premise, it also
holds for the conclusion of the inference.

2. TheformulabeingUsedistagged F. Inthiscasetheinduction hypothesis applied
to the premise tellsus that C;, D; C A;, B; and C; C A;. The properties that we
wishto show holdinthe conclusionareC;, D; C A;, B;, F! andC; C A; andthese
follow directly from the induction hypothesis.

126 CHAPTER 4. IMPLEMENTATION ISSUES

3. TheformulabeingUsed istagged F;. In this case the induction hypothesis applied
to the premise tellsusthat C;, D; C A;, B; and C; C A;. The properties that we
wish to show hold in the conclusion are C; C A;, F; and C;, D; C A;, F;, B; and
these follow directly from the induction hypothesis.

The & rule:
Theleft premiseis

6:Ag,Ay,... Ay, B,B!,... B, =C,...,C,,D!,... DI D]
and theright premiseis
6:Ag, Ay, ..., Ay B,B!,... Bl = F\, ... E, F!,... F F
By the induction hypothesis these satisfy the constraints
Ci,D; C A, B;
C; C A,
E;, F; C Ay, B
E; C A,
The conclusion of the & inference is
6:Ag, Ay, ... Ay, B, B!,... B =Gy,...,G,,H,... H H

Thefirst property wewishto show isthat G;, H; C A;, B;. Wehavethat G;, H; C C;, D;
since— by the definition of the & rule—G;, H; istheintersection of C;, D; and E;, F; and
henceG,;, H; C C;, D; C A;, B;. Thesecond property isthat G; C A;. Notethat mintag
will “place” aformulain G; if and only if it occursin at least one of E; or C;. Hence,
sinceC; C A; and E; C A; (by the induction hypothesis) any formulain GG; must occur
in A; hence G; C A; asrequired.

The® rule:

On the top left-hand side of the rule we have the sequent

§:p,Ay,..., Ay B, ... Bl =Cy,...,C,, D!, ...,D, D]

4.2. SOUNDNESS 127

which satisfies the conditionsC;, D; C A;, B; and C; C A;
On the top right hand side of the rule we have the sequent

§:q,CLCyt .0 DPY DY DY = By, ... B, F,... FF]

Y n’

which satisfies the conditions E;, F; C C(i11), D1y @d E; C Ciyyy.
The conclusion of the inferenceis

§:pRq, AT ALY AL BIY B BT = DL Ey, ... B, F,... F' F}

We wish to show that this sequent satisfies the properties E;, F; C A1y, Biy1y ad
E; C Agyny. Wehavethat E; C Ciyiy C Apuyry and that B;, F; C Cligy, Diyry C
Agiv1), Bty B

LEMMA 98

Inthe® rule we havethat A C T.

Proof: Thisfollows from lemma 97 since A correspondsto C, andI" to A;. B

We now define backpatching. Backpatching is used to ensure that D* C B’. In-
tuitively, the role of backpatching and propagation is to take formulae which have been
consumed by a T rule and which have not been “unconsumed” and place them at the
appropriate T rule. Note that the result of backpatching and propagation may not be a
proper proof under M. However under the mapping defined by the third step of Algo-
rithm 1 (below) the result will be awell formed £ proof. To avoid confusion we shall
refer to the result of backpatching and propagating an M proof as a quasi-proof. Note
that in some cases backpatching may not have any effect; in these cases the quasi-proof
isjust an M proof. An example of such aproof is

DEFINITION 30 (QUASI-PROOF)
A quasi-proof is a backpatched and propagated M proof.

DEFINITION 31 (BACKPATCHING)
To backpatch an M proof we modify certain sequents occurring in the proof as follows.
The structure of the proof remains unchanged.

128 CHAPTER 4. IMPLEMENTATION ISSUES

e Wereplace a! inference of the form

5:F:>D?/ZL"

with the inference))
0:F.D'= D'/x

e We replace the inference

? ? =7 =7
L= I I L= B E

o= 2t

&

with the inference

(I — (21,8 = I I (B ED — (8,80 =

.)

=7 =7

—
s gy —

S S)

e We transform the root of the proof from

to _
T, D! = D’

EXAMPLE 13

We backpatch the proof

gt p',q = p'/false

S
T7p17q1 = qu;/true qJ_ap?aq? = p?/false ®

T ®qt,p,q=p'/true

&

In this case, there are no occurrences of | or & inferences and so the only sequent that is

changed is the root of the proof which hasp® added to it yielding

gt p' q=p'/false

> se
Taplaql ip;,qz/”ue qLap?aq? :>p'/false ®

P, T ®q*,p,q=p'/true

4.2. SOUNDNESS 129

Propagation fixestheinvalidinferencesthat aretemporarily introduced by backpatch-
ing. We propagate from each point where backpatching was done. Note that the prop-
agated formulae are of the form p°. When propagating into the left premise of a® rule
we do not add atag; that is, the propagated formulae remain in the form p* and not the
form p;. Thereason for thisisthat backpatching introduces formulagin order to balance
residue of theform p*. We therefore desire the introduced formul ae to remain associ ated
with the appropriate residue.

DEFINITION 32 (PROPAGATION)

To propagate from a sequent we take the formulae which were added by backpatching
and add them to the sequent’s premises using the following rules. Propagation is goplied
to each sequent which was backpatched.

e [f the sequent is the conclusion of one of ', 1., ®,V,3,?D,? or Use then the for-
mulae are added to the premise of theinference and we propagate from the premise.

e [f the sequent is the conclusion of one of 1, Ax or! then propagation fails.
e [f the sequent is the conclusion of aT inference then propagation succeeds.

e If the sequent is the conclusion of a & inference then the formulae are added to
both premises and we propagate from both premises.

e If the sequent is the conclusion of a® inference then there are four cases:

1. Both premises aretagged / f alse — propagation fails.

2. Theleft premiseistagged /true andtheright / false —we add al of therel-
evant formulae to the left premise and propagate from the left premise.

3. Theright premiseistagged /true and theleft / false —we add al of therel-
evant formulage to the right premise and propagate from the right premise.

4. Both premises are tagged /true — We add the formulae corresponding to =*
to the right premise and those corresponding to ¢, or X7 to the left premise.
We then propagate from both premises.

130 CHAPTER 4. IMPLEMENTATION ISSUES

EXAMPLE 14
We apply propagation to the root of the following backpatched proof.

gt p' q=p'/false
Se
Tap17q1 = p;aQ;/true qJ_ap?aq? = p?/false ®
P, T ®qt,p,q= p'/true

In this case backpatching has added the formulap® to the root of the proof. The sequent
is the conclusion of a® inference with one premise tagged /true and the other tagged
/ false. We add the formula to the left premise (which is tagged /true) and propagate
from that premise. Propagation from the conclusion of a T inference simply succeeds.
This gives us the following quasi-proof:

gt p' q=p'/false
p?aTaplaQI :>p;7q‘1?/true qlap?aq? :>p?/false ®
P, T ®qt,p,q= p'/true

Se

Note that the quasi-proof’s T inference is not actually an instance of the T rule sincep’
is not returned as residue. Applying the translation in Algorithm 1 (see below) to this
quasi-proof yields the following L proof:

T Azx

:T,p 1 qh,q
: T ®q*,pq

By applying backpatching and propagati on we obtain aproof of the sameformwhere
at every sequent D} isasub-multiset of B;. Thenext few lemmasshow that backpatching
and propagation will always succeed. We begin by showing that whenever backpatching
isneeded thereisa T rulein the proof.

DEFINITION 33
We say that aT inference occurs above a sequent if the sequent is either the conclusion
of aT inferenceor aT inference is above one of the sequent’s premises.

LEMMA 99
If thereisno T inference above a sequent then C; C A, and D; C B; fori > 1.
Proof: Thefirst property has already been proven inlemma 97 for the more general case

4.2. SOUNDNESS 131

including T inferences. Hence we only need to show that in the absence of T inferences

D; C B;. We useinduction.

Thelrule: D; = B; sothe property holds.

The e rule B; and D; are the same in both the premise and the conclusion. By the

induction hypothesis D; C B; in the premise and hence this holds for the conclusion.

The ! rule: By the induction hypothesis the desired property holds for the premise of

the inference. In the conclusion of the inference D; = B; (asfor 1) and the property

follows.

The T rule: Cannot occur by definition.

The Userule: By the induction hypothesis D; C B; in the premise. The conclusion

differsfrom the premisein that one of the B; might be augmented with F' hence D; C B;

holds in the conclusion.

The ® rule: On thetop left hand side of the rule we have the sequent
§:p,Ay,...,ALB ... B =Cy,...,C,, D! ... D! D

) n?

which satisfies the condition D; C B,;.
On the top right hand side of the rule we have the sequent

? ?

§:q,C7N 5t .., DY DY . D = Ey,... E,, F!,... F;

n?

Fy
which satisfies the condition F; C D; 1.
The inference’s conclusion is

§:pRq, AT A, A BTN BT . B = D{,E\,... \E,,F,... F

n?’

Iy

We have thatE C Di—l—l C Bi+1-
The & rule: Theleft premiseis

6:Ag,Ay,...,AyBl,... Bl =C,,...,C,,D!, ... D D]

Y n n’

and the right premiseis

§:Ag,Ay,..., Ay Bl,... Bl = E\,... E,F,... F' F

n n’

132 CHAPTER 4. IMPLEMENTATION ISSUES

These satisfy the constraints D; C B; and F; C B,;.
The conclusion of the inferenceis

? ?

§:Ag, Ay,... Ay Bl,... B =Gy,...,Gn, H!,... H' H;

y £dmo

We wish to show that H; C B;. For aformulato bein H; it must be inboth F; and D,,
hence it must bein B; and H; C B; asrequired. B

LEMMA 100

If thereisno T inference above a sequent then Dy C B.

Proof: Induction over the height of the proof. The only non-trivial rules are ® and &.
The & rule:

The induction hypothesis applied to theright premise give usthat =* C I'*. SinceX’ =
Z'N... wehavethat ¥* C =7 C I'? asrequired.

The® rule:

Using the notation of the® rule we wish to show that ¥, = C T'*. Applying the induc-
tion hypothesisto theleft premisetellsusthat =* C (). Applyingtheinduction hypothesis
totheright premisetelsusthat >* C I1°. Finally, applying lemma 99 to the left premise
provides uswith theinformation that IT°+* C T"**1. Putting all thistogether we have that
=LY CIIP C I asdesired. &

We now show that propagation always succeeds.

LEMMA 101

If a sequent istagged / false then for al i > 0 we havethat D; C B;.

Proof: By induction over the structure of the proof. The two non-obvious cases are the
binary rules.

&: There are three cases. Note that the conclusion of a & inference is tagged with
/true iff both premises are tagged with /true.

1. Both premisesaretagged / false: In this case both premises satisfy the con-
dition and it follows from examination of the rulethat so does the conclusion.

2. Exactly one of the premisesistagged / false: The B; in the premise and the
conclusion are identical. Since Deonelusion — pleftpremise o pyrightpremise

4.2. SOUNDNESS 133

we have that
Diconclusion g Déeftpremise

conclusion rightpremise
D! C D!

Without loss of generality assumethat theleft premiseistagged / f al se. Hence
Déeftpremise C B; and Diconcl’u,sion C Déeftpremise C B, anGC]UiI’Gd.

3. Both premises are tagged /true: The conclusion of the inference is tagged
/true and the induction trivialy holds.

®: There are two cases

1. Both premises aretagged / false: Inthis casefori > 0 we goply lemma 99
and for i = 0 we apply lemma 100.

2. One or more of the premises are tagged /true: The conclusion of the infer-
ence must be tagged /true and the induction trivially holds.

COROLLARY:If D; ¢ B; for somei > 0 then the sequent must be tagged /true. B

We have shown that D; ¢ B; can not be the case for sequents which are tagged
/ false. We now argue that (a) propagation will always succeed when it is applied to se-
quents which are tagged /true, and (b) backpatching is only applied to sequents tagged
with /true. 1t follows that backpatching and propagation cannot fail.

LEMMA 102

If asequent istagged with /true then we can add formul aeto the sequent and successfully
propagate them.

Proof: By induction on the height of the sequent calculus proof. The base case is the
T rule which trivially satisfies the desired property. The only cases where propagation
falsare a® inference with both premisestagged / false and Ax, 1 and! inferences. We
therefore need to show that if a sequent is tagged with /true then

e Ifitisaunary ruleitspremisemust also betagged /true and hence by theinduction
hypothesis we can add formulae to the premise of the inference and successfully
propagate them.

134 CHAPTER 4. IMPLEMENTATION ISSUES

e Ifitisas& inference both premisesmust be /true and hence propagation succeeds.
e Ifitisa® inferencethen at least one premise must be /true.

From examination of thealgorithm for propagation it isobviousthat only sequentstagged
/true areever propagated into, providing theinitial sequent wastagged with /true. Thus
propagation from a /true sequent cannot fail. B

LEMMA 103

Backpatching and propagation succeed on any M proof.

Proof: We show that backpatching isonly gpplied at sequentslabelled /true and invoke
lemma 102. There are three places where backpatching may be applied:

1. A & inference: The side conditions on the rule ensure that if backpatching adds a
nonempty multiset of formulae to a sequent then the sequent will be tagged /true.

2. A !inference: For backpatching to apply D* must be nonempty in the premise.
Sincethe premise has B* = () thisimpliesthat D* ¢ B and hence by lemma 101
the sequent must be tagged /true.

3. Theroot of the proof: For backpatching to apply D* must be nonempty. Since the
root of the proof has B* = () we can apply lemma 101 to conclude that if back-
patching is needed the sequent must be tagged /true. B

We are now in a position to define an algorithm mapping from M to £ proofsand to
useit to prove the soundness of M with respect to L.

Our first task isto show that the algorithm produces an output for any input M proof.
We then show that the output isawell formed £ proof. Soundness follows from this.

In proving successful termination the only questionable step of the algorithm is the
subtraction

(Afv,7 B?,) - (0;53,7 D?I)

We have shown that Ct C A! but there are cases where D? ¢ BY.

4.2. SOUNDNESS 135

Algorithm 1 Translating M to £ proofs

Input: An M proof withroot I' = D’

Procedure:
1. Backpatch (Definition 31 on page 127)
2. Propagate (Definition 32 on page 129)
3. Apply the trandlation:

§:T,A' B"= C! D"

I3
5:T, (AL, B") —(c¥,D"))

Output: An L proof of I'

EXAMPLE 15
The following proof has B* = () and D* = p*.

T 1
p1, T = pl/true p',1=p'/false
p, T ®1= p'/true

We thus need to show that the result of backpatching and propagation has D? C B”.

LEMMA 104

If asequent hasthe form ... = ... D" ... then Algorithm 1 will backpatch D into the
proof somewhere below the sequent.

Proof: We argue that if a premise of an inference has D* # () then either

1. D" isbackpatched (if theruleis ! or in certain cases for a& inference)
2. The conclusion of the inference contains D’ in its residue.

The only rules where the D* in the premise and the conclusion are not identical are!, ®
and &. The conclusion of the cross rule has all formulae of the form D* which appear

136 CHAPTER 4. IMPLEMENTATION ISSUES

in either premise. The conclusion of the & rule contains some of the formulae of the
appropriate form which appear in the rule’s premises. The formulae which are not in the
conclusion of the inference are backpatched. All of the formulae of the form D? in the
premiseof the! ruleare backpatched. Henceif the formulae of theform D" in aparticular
sequent are not backpatched at that inference, they are present in the residue of the root
and hence are backpatched there. B

Note that the backpatching of a multiset D? need not happen at the same place - it is
possible for a & rule to backpatch part of a multiset and pass the rest downwards.

EXAMPLE 16
A proof of thesequent T ® 1, p, g & r begins with the inference

T®1lp,q=p,q¢/true TLpr=p, r'/true 2
T®Lp,q&r=p'/true
This inference is backpatched and propagated to yield the quasi-proof

T®1pqp,q =p' ¢ /true TRLp,rp r"=p' r/true 2
T®1,p,q&7,p" = p'/true

which is then transformed to the following L proof

T ®Lpqg :TRLpr 2
T Lpqg&r

LEMMA 105

Any sequent of theform. .. = ... D’ /true will have (at least) D* propagated into it by
Algorithm 1.

Proof: By lemma 104 we have that D* must have been backpatched below the sequent.
We then use induction on the structure of the proof from the root to the leaves, to show
that it will be propagated into the sequent. The base case of the induction is the point
where D* was backpatched. The unary rulesare obvious, thenullary rules areirrelevant.
The & rule works by definition — if the conclusion of the inference is of the appropriate
form then it has D* propagated into it which also propagates D’ into the premises. If
the conclusion of a® inference is of the gopropriate form then if either premiseis of the
appropriate form we can propagate the appropriate formulae into it.

4.2. SOUNDNESS 137

If one of the premisesisfalse the other may get morethan D propagated into it. For
instance, in the previous examplethe T inference has an empty D but has p” propagated
intoit.

LEMMA 106

Any sequent occurring in a quasi-proof satisfies the condition Ct', D*' C At' B”'.
Proof: From lemma 97 we have that Ct' C At'. If the original sequent (that is before
backpatching and propagating) violated the condition then by the corollary of lemma 101
we have that the sequent must be tagged with /true and hence by lemma 105 we have
that the violation will be fixed by backpatching and propagating. B

We now need only to show that the result of the algorithm is a proper £ proof.

THEOREM 107 (SOUNDNESS)

IfT" = D’ isprovablein M then there existsan £ proof of () : T.

Proof: The root of the proof is backpatched and transformed to : T'. We then show that
each of theinferencerules of M are backpatched, propagated and transformed into sound
L inferences. Hence the algorithm mapsthe M proof of T' = D? intoan L proof of : T.
Thelrule

This rule is not backpatched and is never propagated since it is tagged / false. It trans-
formsto

j_l

Theg rule:
Thisruleisnot backpatched. Let Y.’ bepropagatedintotheruleandlet A = (AL’ B¥' %) —
(DY, CY") then the ruleis transformed to

0: F,G,I',A
0: FeG, I A

TheT rule
Thisruleisnot backpatched. Let Y’ bepropagatedintotheruleandlet A = (AL’ B*' %) —
(A?' B™ (actually, since AL = A’ we havethat A = X.) then the transformed

138 CHAPTER 4. IMPLEMENTATION ISSUES

ruleis
S TL.A |

The & rule:
Let X’ be the propagated formulacand let > = X' U 7. The result of backpatching
and propagating a & inferenceis

§: F,[,Tt T7 N ((IL,T°) — %) = L, 17 §:G,T,0L, 7R (2,27 — %) = =, =7

Y x?) x?

§:FRGI,TLTI R = %

Y x)

&

Let A = (T, T7,R?) — X. Then the trandation of the inference into an L inference is

d: er’ ((F;I’F?” N?Iv ((Hil’H?l) B E,)) B (Hatr:lvﬂ?l)) d: G’Fv ((Fil’r?lv N?l’ ((Ei,’E?l) B EI)) B (E;”E?’))
0: F&G, T, A

&

Observe that

((ngl7 F?lﬂ N?lﬂ ((Htxlﬂ H?I) - Z,)) - (Htx,7 H?,))
((ngl7 F?lﬂ N?lﬂ Htxlﬂ H?I) - (H;I7 H?I7 Z,))
((F;Iv F?la N?,) - El)v ((Hilv H?,) - (Htx,v H?,))
((F;Iv F?la N?,) - EI)

= A

So the inference can be rewritten as

o:p, A §:¢,T,A
0:p&q, T, A

TheUserule
Thisruleisnot backpatched. Let Y.’ bethepropagated formulaeandlet A = (AL’ B*' %) —
(C!', D" then the rule propagates and transforms to

d: F',T',A
5P T.A Use

4.2. SOUNDNESS 139

which isasound (if useless!) L inference.
The!rule
Thisruleis not propagated. It is backpatched to
§:F,D"= D"/x ‘
§:\F, AL B" = AL B"/false

and transforms to

5:F‘
0:F -

The® rule:

61 FIHL I I = ATL I I 2 e 3 GOA I IE = 9 Sy
§:FGI,TL T =3 Y =z vy

y Lo

Thisruleis not backpatched. There are four cases:

1. x =y = false inwhich case there is no propagation and the rule is mapped to

0 F, (DL, TEHL TP — (AT ZF TIEF TTHYY) 60 G, A, (T, 1) — (31, 57)) .
§: FeG,T, (TL,T7) — (2,29, 57)

xrr—

In order for thisto beavalid L inference we need to show that the formulaein the
bottom sequent of the rule are split between the left and right top sequents. Note
that we shall take the primes (—') as read in order to avoid notational clutter.

(0,15, 1) — (A S I, T)) A, (I, IT) — (825,%7)) = T, (I;,T) - (5,5, 2))

~

Top L ef?Sequent Top Ri gfﬁ Sequent BottomvSequent

We now show that the left hand side of the equation is equal to theright. The left
hand sideis ((T', T, T7) — (A, =, 11, T17)), A, ((TIE, TT°) — (=2, 7). Rearrang-

? x)

ing we obtain A, (I, T':, 7, I1L TT7) — (A, 2,11, 117, ©t | ©57)). We can subtract

b T

I 17 to yield A, (T, T, T7) — (A, =, 34, 57)). From lemma 98 we have that

) x)

ACT. WeletI' = A, A’ obtaining A, (A, A", Tt T%) — (A, Z, 5L, 57). We

) T

can subtract the A yielding A, (A, TL, T7) — (2, %L, 7). Applying lemma 106

Y x)

to the conclusion of theinferencetellsusthat >! , %', =" C Tt T, Thisalowsus

140 CHAPTER 4. IMPLEMENTATION ISSUES

toliftoutthe A’ giving A, A'(TL, T7)— (2, XL, 7). But by definitionT = A, A’
and so thisisjustT, ((I't, ") — (2, %, 7). But thisisjust the formulae occur-
ring in the conclusion of the inference so we have avalid L inference.

2.r = true andy = false. Let X’ be the propagated formulae, then the rule is
propagated and transformed to

0 F, (W, THL Ty T — (AL EL TP TTY)) 6 GLA, (I,) — (328, 57)) .
§: F®G,T, (I, T7, X)) — (5,27, 57)

For thisto correspond to the L rule for ® we need to show that
L, ((Fiﬁ F?a N?I)I - (Etxv E?v E?),)

= (N, DL TE DY - (AL ST T T, A, (I,) — (B, 57

Consider the right hand side of this equation. We can rearrange the formulae to
obtain A, ((X7,T+! Tt D7 TIE TT7) — (AT 27 TIEH T4 St 57)'). By
subtracting ITX+Y TI°HY) wehave A, (R?, [+ TEHL 7+ — (A+L E7 5 7).
As before, lemma 98 allows usto definel’ = A, A’. We can subtract the A and
obtain A, (R, A’t! i1 o1y (=7 vt »7). As before we can apply lemma
106 to the conclusion of the inference and conclude that ¢, %", =% C Tt T" N,
This allows us to lift out the A’ yielding A, A’ (X, TLFL TP — (27, 5L ¥7Y
which is by definitionT" (R*, TLH T — (27 3t 537, This shows the desired
equality. Hence the resulting inference isvalid in L.

3. x = false andy = true. The reasoning here is analogous to the previous case.

4. v =y = true. Let ¥’ and 2’ be the propagated formulae. N’ gets propagated into
the left premise. J° gets propagated into the right premise. The ® rule is propa
gated and transformed into

§: F, (W, DHL DL TP — (AFL E7, I Y)Y 6: GLA, (37,10, IT) — (2, 57)) %
0:F® G,Fa ((F;,F?, N?,:?)I - (25075?7 E?)l)

For thisinference to be valid in £ we need to show that

L, (T, T7 N,) — (21,27, 57))

4.3. COMPLETENESS 141

= ((N?a F+17 th—i-l’ F?_H),_(A_Ha E?a H;—Ha H?+1)I)7 Aa ((3?7 H;: H?)I_(Et:ca E?),)

Consider the right hand side of the equation.
((N?a F+17 th+la F?+1)I - (AJFI, E?a th+17 H?+1)I)7 Aa ((:?7 Htxa H?)I o (Etma E?),)

We can rearrange the equation to obtain A, (R, !, TtH T+ 27 11 1T°) —
(ATLZ7 L L 5L 57)). As before, lemma 98 allows us to defineT” =

A, A’. We can then subtract the A and uselemma 106 to allow usto lift out the A’
yielding A, A', (N, T TP 37— (27 5L 37 whichisjustT, (X7, TLH TP+ 07) —
(Z?,5¢,57) asdesired.

4.3 Completeness

Given an £ proof itisfairly trivial to find an equivalent M proof — one can simply use
Use inferences after each ® rule to ensure resources are allocated correctly. Unfortu-
nately the resulting proof is not one which can be found bottom up using a deterministic
search procedure since it applies the Userule in an “omniscient” way.

In order to have a more useful completeness property we need that for any £ proof
thereisan M proof which only usesthe Userule deterministically. We define a subclass
of proofs (use-valid) which captures the deterministic use of the Use rule. We then give
an algorithm which given an £ proof produces ause-valid M proof.

DEFINITION 34

An gpplication of Use is said to be valid if it either occurs immediately beneath a rule
which acts on the side formula of the Use rule or it occurs in a sequence of rules of the
form:

Ax

p,pt AL B" = AL B"/false
Use

papJ_gthgtm B? = A;., B?/false
pgtpapJ_tg;aAgtm B? = A;., B?/false

Use

An gpplication of Use js said to beinvalid if it occurs other than in one of these two Sit-
uations.

142 CHAPTER 4. IMPLEMENTATION ISSUES

We use the phrase use-valid as shorthand for “all occurrences of the Use rule are
valid”.

Our completeness theorem states that for any £ proof there exists a use-valid M
proof. Hence when searching for a proof in M it is sufficient to only apply Use to a
formulawhen we are about to apply another rule to that formula. That is, we can elimi-
nate Use by modifying each rule to operate on tagged formulae. For examplein addition

to
§:F,G,T,At B" = C!,D'/x

§:FeG T AL B"= CL, D" /x

we define the rules;

§:F,G,IAL B'= C!,D"/x
§: (Fe@),,TAL B"= C!, D"/x

§:F,G, I AL B'= C!,D"/x
§:(Fe@) T,AL, B"= C! D"/x
§:F,G,T,AL B" = C!, D"/x
d: (F G)ZL,F,A;,B? = C’;,D?/x

The Lygon implementation uses this idea and hence does not need an explicit Userule.
Recall that we usethe notation T+ toindicatethat all theformulaeinT" havea — tag
added. We shall also define the notation I'(+?) to indicate that some (unknown) subset
of theformulagin I has —* tags added.
We shall need anumber of lemmasin the construction of the algorithm. Theseenable
us to “massage” proofs by adding tags and formul ae.

LEMMA 108
If there is a use-valid proof of I',T't, T = A’ Al then there is a use-valid proof of

Y x)

[T, T7 AL, BY = AMHD B AT AL,

b T

Proof: We use induction on the structure of the proof. R

LEMMA 109
If thereis a use-valid proof of ' = A/ false then thereis a use-valid proof of ', A, =
Ay, A/ false.
Proof: By lemma 108 we haveaproof of T', A; = A{™ A/ false. By lemma 101 we

4.3. COMPLETENESS 143

havethat D; C B; (where D;, B; are formulae of the form F' and D; is on the right of
the=- and B, ontheleft). SinceT’, A, does not contain any occurrence of the —* tag —
that is B; is empty - we have that D; must be empty. Hence no —° tags are added, that
is, AtD = A. W

We define subf T to return all the formulae and sub-formulae occurring in I". The
intuition is that it represents all the formulae that can be generated from I" and so we
shall also extend subf ' with all instances of formulae where quantifiers are involved.
For example, if ' = {p,q & (r @ s), Jxt(z)} then (subf T) = {p,q,r,s, 7D s,q &
(r @ s),t(X)} for any value of X.

LEMMA 110

For any sequent of the form ', AL B* = C!, D in an M proof we have that D* C
(subf T') U B*.

Proof: Induction over the structure of the proof. The only non-trivial caseisthe ® rule.
Using the notation of the® rulewewant to show that =" UX? C (subf (TU{F®G}))U
I'*. Applying theinduction hypothesisto theleft and right premises of theinferenceyield
respectively that =° C (subf {F}) andX* C I U (subf (AU{G})). Applyinglemma
97 to the left premisetellsusthat A UTI* C T? UT andthat A C T'. Hence

N

=Tuy’ IT° U (subf (AU {G, F}))
MUAU (subf (AU{G® F}))
I"uru(subf (TU{G® F}))
U (subf (TU{G® F}))

N 1N

N

In the construction of the algorithm wewill find that we need to find proofswith addi-
tional tags at theroot. Asageneral intuition, the tags make it easier to prove something.
Thusif f addstags and thereisa(use-valid) proof of A = ... thentherewill be a(use-
valid) proof of (f A) = Notethatingeneral theresidue(the“. ..") will bedifferent.
The proof is (asaways) by induction. To be ableto induce over the binary ruleswe need
to know exactly what the effect of adding tagsis on the residue.

144 CHAPTER 4. IMPLEMENTATION ISSUES

Determining the effect of adding tags on the residue is dlightly tricky since we are
dealing with multisets and as a result it is not obvious where a formulain the residue
comes from. For example consider the proof
Ax

Use
%y

p,p,pt =
T,p1,p; = pi,p; pLpLpt=p
T@pt,p,p" =p

We now add a —; tag to the p at the root of the proof. Naively we reason that p occursin
the residue and hence adding atag to it should add atag to thep’ occurring in theresidue.
Thisis correct; however there is another alternative — the residue could have come from
theinitial residue. Thus either of the following proofs are possible. The difference be-
tween the two proofsis that the axiom rule uses a different occurrence of p.

- Ax — Az
pl,p,pt = p} p.p’,pt =p’
? L I 7 Use 7 77 1 5 o T 7 Use
T,p2,p1 = P2, P1 PP P = Pi ® T,p2,p1 = P2, D1 P1,P P =P ®
T@pt,pi,p" = pi T®pt,p1,p° =

This type of situation makes it non-trivial to reason about the effect on the residue of
adding tags. Matters can be simplified if we assume that it is possible to distinguish be-
tween multiple occurrences of aformula. In particular, thisallows usto track where for-
mulae in the residue actually came from. Thisis afairly standard assumption and one
way of allowing multiple occurrences of formulae to be distinguished is to give atoms
numerical tags. Thisis done by giving each atom at the root of the proof a unique nu-
mericidentifier and then propagating the identifiers upwardsthrough the proof. Therules
for propagation are mostly obvious with afew exceptions:

e Duplication of formulae (7 D) requiresthe creation of new tagsfor theatomsinthe
copy.

¢ In some situations (like the Use rule in the above proofs) multiple assignments of
tags are possible. It is crucia to note that whenever more than one assignment of
tagsis possible any of the assignmentsworks. Thisis obvious since multiple tags
are only relevant when we are choosing between identical formulae—if the formu-
lae areidentical it does not matter which we choose!

4.3. COMPLETENESS 145

e Theaxiomsusethe sametagsfor theresidue. For examplethe T rulein the above
proof might look like:

T,alt,a2,a3" = a3’

e The & rule usesidentical tagsin the non-residue parts of both its premises.

For the purposes of the next lemmawe shall assume that we can di stinguish somehow
between different occurrences of aformula. In the following lemma, when we say that
something may be done we mean that the choice is determined by the proof and just from
looking at the root sequent we cannot tell which choice will be made.

LEMMA 111
Let A, B,C and D be multisets of (possibly tagged) formulae. Let F' be a single (un-
tagged) formula. The following properties hold:

1. Ifthereisause-validproof of A, I} = B thenthereisause-validproof of A, F/ ™' =
C whereC differs from B inthat if F' occursin B as F we add one to the tag of
the occurrence. i.e. F! isreplaced by F'+*.

2. If thereisause-valid proof of A, F; = B then there are use-valid proofs of both
o A F'' = C whereC differsfrom B inthat if F occursin B either as F; or
as F;! we add one to the occurrence’s tag.
e A, F! = D where D differs from B in that if F occursin B as F; then we

add a—" tag to the occurrence.

3. Ifthereisause-validproof of A, F* = B thenthereisause-validproof of A, F| =
C where C differs from B in that F* occurs in B then we add one to the occur-
rence’s tag.

4. If thereisause-valid proof of A, F' = B/ false then thereis a use-valid proof of
A, Fy = B/ false.

146 CHAPTER 4. IMPLEMENTATION ISSUES

5. If thereis ause-valid proof of A, F = B/true then thereis a use-valid proof of
A, Fy = C/true where C differs from B in that if F* occursin B then we add
one to the occurrence’s tag. i.e. F* becomes F}. If F* does not occur in B then
C differsfrom B in that it may contain F”*. The latter case reflects that we do not
know whether the formulae in question was consumed by an axiomor aT rule.

6. If thereisause-valid proof of A, F = B/ false then thereis ause-valid proof of
A F" = B/ false.

7. If thereis ause-valid proof of A, F = B/true thenthereis a use-valid proof of
A, F?' = C whereC differsfrom B inthat F* may be added to it.

Proof: Induction over the structure of the proof. Therules1, T, ! and Ax are easily
verified.

Unary Rules:

IntherulesUse and e we can useinduction trivialy if F' is not the principal formula. If
F istheprincipal formulathen we observethat F' cannot occur in B by lemma 110 (since
the proof is use-valid the active formula in a Use rule must be decomposed as the next
step) and notethat in all induction cases, if F' isnot in B then a proof with an unmodified
residueis satisfactory (that is, satisfiesall clauses of theform“may ..."). Thusaproof is
constructed by adding aUse rule immediately beneath a unary inference other than Use.
The & rule:

We notethat if F' isin exactly one of the premise’s B then that premise must be tagged
/true due to the side conditions on the & rule. Properties 1-3 aretrivial —if F' occursin
both premise’s B then we must be doing exactly the same thing to both residues so the
residue in the conclusion is also modified accordingly. If F' occurs in exactly one of the
premise’s Bs then the modified residue does not get propagated to the conclusion of the
inference. Properties 4—7 are more interesting. There are three scenarios:

1. Both premises are tagged /true. The properties that goply can be readily verified
using a smple gpplication of the induction hypothesis.

2. Both premises are tagged / false. Again, simple goplication of the induction hy-
pothesis suffices.

4.3. COMPLETENESS 147

3. Onepremiseistagged /true andthe other istagged / false. Thisistheinteresting
case. By lemma 101 gpplied to the / false premisewe havethat D* C B*. Hence,
since F isnot in B* (it has no tags) it cannot occur in D*. Therefore we cannot
have a situation where adding tags in the /true premise reduces D* and forces a
violation of the side condition in the / false premise. Having verified that illegal
Situations cannot arise we can apply the induction hypothesis.

The® rule:

We prove the properties using simultaneous induction. We indicate for the proof of each
property which of the seven inductive hypothesesis applied to which of thetwo premises,
The proofs of properties 1, 2 and 3 are straightforward. For property 1 we apply induc-
tion hypothesis 1 to the left premise and induction hypothesis 3 to the right premise. For
property 2 we apply induction hypothesis 2 to the left premise and depending on whether
F occursin B asF; or F we apply induction hypothesis 1 or 2 to the right premise. For
property 3we apply induction hypothesis 1 to the left premise and induction hypothesis 3
to theright premise. To prove properties 4 and 6 we observe that if the conclusion of the
inference is tagged / f alse then both premises must be tagged / f alse. We gpply induc-
tion hypothesis 2 to the | eft premise and induction hypothesis 4 or 6 to the right premise.
Lemma 101 tells us that that for property 4, F' can only occur as F; in the residue of the
left premise. In proving property 5 we gpply induction hypothesis 2 to the left premise.
There are three cases depending on whether F' occurs in the left premise’s residue, and
if so, whether it occurs as F; or F; :

1. If F doesnot occur intheleft premise’sresiduethen F' doesnot occur intheresidue
of the right premise or of the conclusion and the proof follows.

2. If F occurs as F; then we simply apply induction hypothesis 5 to the right premise.

3. if F occursintheresidue of theleft premiseas F;! then we apply induction hypoth-
€esis 7 to the right premise and then apply induction hypothesis 5 to it.

To prove property 7 we consider two cases:

1. Theright premiseistagged /true: In this case we apply induction hypothesis 2 to
the left premise and induction hypothesis 7 to the right premise.

148 CHAPTER 4. IMPLEMENTATION ISSUES

2. Theright premiseistagged / false: In this case we apply induction hypothesis 2
to the left premise and induction hypothesis 6 to the right premise. In this case F”*
isnot added to C'.

LEMMA 112

If thereisause-valid proof of ', A = X7 /true thenthereisause-valid proof of I', A, =
I1°, = /true for some = and 1.

Proof: LetA = XUY U ZwheeX' C Yand(YUZ)NYX = (e Xis
al the formulae in A which occur inX.). Applying part 5 of lemma 111 we have that
formulae in X have one added to their tag and formulae in (Y U Z) are possibly added
toX’. Assuming without loss of generality that Y is added to X* this gives us a proof of
A = ((ZUY) — X), X7 which can bewritten asT', A, = I1°, =} for some= and
I1. m

LEMMA 113
If thereisause-valid proof of ', A = / false thenthereisause-valid proof of T', A =

/ false.
Proof: Corollary of part 4 of lemma111. R

LEMMA 114

If there is a use-valid proof of ', A = D’ then there is a use-valid proof of T+?, A =
D?, =" for some= C T.

Proof: Corollary of parts 6 and 7 of lemma 111. B

We now present an algorithm for mapping proofsin £ to M. The agorithm (defined
in figure 2) makes use of the following definitions.

DEFINITION 35 (TRANSLATING NULLARY RULES IN ALGORITHM 2)
Anaxiom istranslated as itself:

§:p,pt A — §:p,pt = /false A

6:T,T = 5:T,F:>/t7"ueT

4.3. COMPLETENESS 149

Algorithm 2 Trandating £ to M proofs

Input: An L proof of § : I'
Output: A use-valid M proof of § : ' = D?/x

Procedure: We process the input top down. At each stage the premise(s) of the current
inference have aready been processed and are M proofs of theform ' = D?/z.
Rules are trandated according to definitions 35 - 38.

DEFINITION 36 (TRANSLATING UNARY RULES IN ALGORITHM 2)

§:F,G,T
0: F9dG,T

Wehavealready trandatedtheproof of § : F, G, I toan M proof of theformé : F,G,I" =
D’ /x. Wethen translate the above inference as

5:F,G,f:>D?/x
5:FoG, T = DJz

DEFINITION 37 (TRANSLATING THE & RULE IN ALGORITHM 2)

The & ruleistranslated in the obviousfashion. If theproofsof § : F,T" and¢ : G,T" have
been trandated to M proofswith respectiverootss : F,I" = I’ /x andd : G,T = =" Jy
then we trand ate the & inference as

§:FT=1"/z 6:GT =52y
§:F&G,T=1"N=Z"/rAy

DEFINITION 38 (TRANSLATING THE ® RULE IN ALGORITHM 2)

Theinteresting rule (asaways!) isthe® rule. Assumethat thetheproofsof § : F,T" and
§ : G, A have been translated to M proofs with respective roots§ : F,T' = = /x and
§: G,A = X" /y. Intranslating the ® inference there are two cases to consider:

150 CHAPTER 4. IMPLEMENTATION ISSUES

Casel—xis/false
We haveause-validproof of § : F,T' = =°/ false. By lemma101= must be empty, and
sowehaves : F,T' = /false. By lemma 113 we have ause-valid proof of 6 : F, Ty =
/ false. By lemma 109 we have a use-valid proof of 6 : F,T'1, A1 = A/ false.

We can then apply the inference

§:F, T, AL = A /false 6:G,A= D/y
§: FRG,T,A= D"/y

which has the desired conclusion and is a valid inference with provable premises.
Case2 —xis /true

We have a use-valid proof of § : F,T" = =/true. By lemma 112 we have a use-valid
proof of § : F,T'; = ¥° 11} /true for someY: andTl. By lemma 108 we have ause-valid
proof of § : F,T'y, Ay = A 57 11! /true. Turning to the right hand premise, we
have a use-valid proof of 6 : G,A = D" /y. By lemma 114 we have a use-valid proof
of 6 : G,AH) = D? O /y for some® C A. By lemma 108 we have a use-valid proof
of § : G,AH) TI" = TI*, D*, ©" /y. We combine the two proofs using a® inference:

§:F T, A= 3000, AN Jtrue -G AGD TP = 117, D7, 07 /y .
§: FRG,IA= %" D" 1", 0" /true

which has the desired conclusion and is a valid inference with provable premises.

Our next few lemmas combine to give us the desired compl eteness result.

LEMMA 115
Algorithm 2 works for any proof in L.
Proof: Check that the algorithm covers all cases. B

LEMMA 116

In a proof generated by the above algorithm, if a sequent is tagged / false then it must
have an empty residue.

Proof: A simpleinductionargument on the structure of the proof. Alternatively, thiscan
be derived as a corollary of lemma101. &

4.4. SELECTING THE ACTIVE FORMULA 151

LEMMA 117

Algorithm 2 produces valid proofsin M.

Proof: Each of the rules except & and @ are translated into an obviously valid M infer-
ence. The® ruleisshown to generate valid M inferencesin definition 38. The& rulein
M however, differs from that produced by Algorithm 2 in that there are extra conditions
on M’s& rule. We need to show that the inferences produced by the algorithm never vio-
late these conditions. The & inferences produced by thealgorithm havelll, = Z! = 0
(Theintroduction of theseis done when processing® rules. Correctnessfor thishas been
shown) Hence the only condition in which a proof produced by Algorithm 2 can be in-
valid is a violation of the last two side conditions; that isx is / false and 1" ¢ =7 or
y is/false and =" ¢ TI°. By lemma 116 these conditions are never violated and hence
Algorithm 2 is guaranteed to produce valid M proofs. Bl

THEOREM 118 (COMPLETENESS)
Ifo : T isprovablein L then there exists aproof in M of I' =.
Proof: By lemmas 115 and 117 we can trandlate any L proof to avalid M proof. &

THEOREM 119 (DETERMINISM)

The M proof produced by Algorithm 2 is use-valid.

Proof: Algorithm 2 does not introduce Use rules and all of the lemmas used yield use-
valid proofs. B

COROLLARY:If a sequent is provable in M then it has a use-valid proof. (By theorem
107 the sequent has an L proof and by this theorem it has a use-valid M proof).

4.4 Selectingthe Active Formula

When designing alanguage based on a multiple conclusion logic one can at design time
impose the constraint that selecting the active formula be done using “don’t care” non-
determinism. Doing this yields a more limited class of formulae but simplifies the im-
plementation. This path wastaken inthedesign of £C [140] and LO[8]. Inthedesign of
Lygon the opposite choice was made. Asaresult Lygon has a significantly larger class
of formulae but has to contend with the problem that selecting the active formulae may
have to be done using “don’t know” nondeterminism.

152 CHAPTER 4. IMPLEMENTATION ISSUES

Althoughin general selecting the activeformulaein Lygon may require backtracking,
in certain situationswe can safely commit to the selection. The situationsinwhich Lygon
can safely use “don’t care” nondeterminism to select the active formula can be partially
detected by using permutability properties. In particular we use the results of Andreoli
[6] and Gamiche and Perrier [44]. This section briefly summarisesthe results of thetwo
papers. For more details we refer the reader to the papers themselves. Note that there
isafair amount of overlap in the results of the two papers although their motivation is
different.

There are three classes of formulae that the results of the two papers indicate can be
selected using “don’'t care” nondeterminism:

1. Asynchronous formulae
2. Synchronous sub-formulae of a synchronous formula
3. Occurrences of | F' where therest of the goal is of the form 7A

If the topmost connective of a Lygon goal is asynchronous then we can select that
goal and commit to the selection. For example, the Lygon goal L, p* ® ¢+, p s ¢ has
a number of proofs. Since L is asynchronous we can commit to applying L — R first
without aloss of completeness. Alternatively, we could select and commit to applying
% — R first and a proof would be possible:

php qtq php qtq
pt®q*,p.q pt®qt,p,q

1 1 ®—R 1 1 1L-R
PTOTPR L L.p”®q,p.q o _ R
Lpt®qtpegq Lpt®qtpeg

Note that as long as there are asynchronous goals we can continue to select an arbitrary
asynchronous goal and committing to the selection.

The second optimisation is an application of focusing (see section 2.4). If we have
just processed a synchronous connective and a sub-formula is itself synchronous then
thereisaproof if and only if there is aproof which begins by reducing the synchronous
sub-formula. For example the Lygon goa p ® (¢ @ r),pt @ r,p & r* has a number

4.4. SELECTING THE ACTIVE FORMULA 153

of proofs. Assume that we select the first formula — which must be done using “don’t
know” nondeterminism — for reduction. Then we can select the sub-formulag ¢ r and
be guaranteed of finding a proof if one exists.
.-
r,p D r+ :
p—L _R E
goOr,podr p,p_@r
p@(q@r),pr®rpert

®—-R

®—-R

The third class of formulae occurs rarely in real Lygon programs and so we do not
discussit any further.

These observations (which are incorporated in the current version of Lygon) yield a
significant reduction in the nondeterminism associated with selecting the active formula.
Benchmarks[150] indicate that the overhead of implementing these strategiesis not sig-
nificant.

The benefit of these strategies varies heavily depending on the program. For pro-
grams which do not use *e there is no benefit as formula selection is aways trivial. In
certain cases — for example aformula of the form

lplw..9l)®...

the benefit is considerable and can reduce the number of solutions and the running time
from exponential to linear time.

We now proceed to prove the completeness of the optimisationsdiscussed. Sincethe
optimisationsare refinements of the standard sequent calculusfor linear logic, soundness
followstrivially.

THEOREM 120

Given a proof in the standard sequent calculus there is a proof in the lazy-splitting se-
quent calculus which has the same structure up to the insertion of U se rulesimmediately
before aformulais reduced.

Proof: Algorithm 2 maps proofs in the standard sequent calculus to proofs in the lazy-
splitting sequent calculus. It is easy to verify that the lazy-splitting proof produced con-
serves the structure of the proof. B

154 CHAPTER 4. IMPLEMENTATION ISSUES

THEOREM 121 (COMPLETENESS OF OPTIMISATIONS)

If there is aproof in the lazy-splitting sequent cal culus then a proof search incorporating
the observations above will find it.

Proof: Theorem 6.1 of [44] states that if a sequent is provable then there exists a “nor-
mal” proof — that is, a proof which satisfies the optimisations discussed. According to
theorem 120 there exists a corresponding use-valid lazy-splitting proof. B

4.5 Discussion

We have shown how to eliminate the nondeterminism associated with resource aloca-
tion in Lygon. We have also shown how to apply known permutability results in order
to reduce the nondeterminism associated with selecting the active formula. Both these
optimisations are incorporated in the Lygon interpreter.

Since both of these sources of nondeterminism are exponential, avoiding themis es-
sential for anon-toy implementation. Measurements confirm that these optimisationsare
significant [150].

Whilst the method presented for splitting resources between sub-branchesis optimal
(inthat the® and T rules are deterministic) the selection of the formulato bereduced is
not. In practice the current system is adequate for the programs we have written.

There are anumber of logic programming languages based on linear logic. Some of
these, like LinLog [6] are based on proof-theoretic analyses, as Lygon is, but, to the best
of my knowledge, have not been implemented and hence do not involve the problems of
lazy splitting discussed in thisthesis.

Others, like ACL [85,88,128] and LO [8-10] use linear logic as motivation and a
design guide for concurrent logic programming. These languages use a somewhat re-
stricted class of formulae which excludes ®. As aresult the implementation problems
are correspondingly simpler, in that neither language needs lazy splitting', and so again
the problems addressed in this paper do not arise.

The last class of linear logic programming languages comprises Lolli [68-70], Fo-
rum [109] and Lygon [57, 122, 149]. These languages attempt to take a large fragment

LActually ACL includes ® but only in contexts which prevent lazy splitting from being needed.

4.5. DISCUSSION 155

of linear logic, implement it and show that the resulting language is expressive and use-
ful.

The notion of lazy splitting was introduced in Lolli [69], and a lazy method of find-
ing uniform proofs (known in [69] as an input-output model of resource consumption)
isgiven. An extension of this system presented in Hodas' thesis[66] handlesthe T rule
lazily. In [32] the notion of lazy splitting is extended to improve the early detection of
failure due to inconsistent resource usage in the two premises of a & rule. It isnot clear
to what extent “typical” Lolli or Lygon programs benefit from this optimisation. On the
other hand, optimising the behavior of T was motivated by observed inefficiency in typ-
ical programs.

Lolli isbased on asingle conclusion logic whereas Lygon is based on amultiple con-
clusionlogic. It is actually possible to encode Lygon into Lolli by using anew constant
and allowing resolution to select the formulato be reduced. Thegoa « *® b istrandated
to ((a — n) ® (b — n)) —o n wheren isanew constant.

We feel however, that a direct approach is more desirable for a number of reasons.
Firstly — as discussed in section 3.1 — there are problems associated with the blind use
of equivalences derived using full linear logic when the proof search processis goal di-
rected. The relationship between goal directed (i.e. operational) equivalence and logical
equivalenceis nontrivial and involvesintermediate logics [53]. The logical equivalence
of two formulae only implies operational equivalenceif the two formulae are within the
appropriate subset. For example, the two formulae

(a®b) — (a®b)

and
(@ — (a® b)) &(b— (a D b))

are logically equivalent; however thefirst is not avalid goal formula and does not have
auniform proof even though the second does have a uniform proof.

Secondly, and perhaps moreimportantly, our presentation allows usto simply usethe
permutability propertiesexploredin [6, 44] to reduce the nondeterminism associated with
selecting the formulato be reduced. In the Lolli encoding, selecting the next formulato
be reduced is done by the resolution rule. Reducing the nondeterminism under the Lolli

156 CHAPTER 4. IMPLEMENTATION ISSUES

encoding would require adding a special case to the resolution rule which examines the
body of the clause and accordingly decides whether the clause can be committed to.

Additionally, our solution handles the Lolli language as a simple case in which all
sequents just happen to have asingle formula. Our solution is aso applicable to Forum
[71].

In addition to the application of this work to the implementation of logic program-
ming languages based on linear logic, the lazy rules above presumably have application
in theorem proversfor linear logic [95, 113, 135, 136], where they eliminate asignificant
potential source of inefficiency.

157

Chapter 5
Applications of Lygon

Inthischapter welook at applicationsof Lygon. Thefirst aim of thischapter isto demon-
strate that Lygon’slinear logic features buy significant expressiveness and allow simpler
solutionsto arange of problems. The second aim of the chapter is to develop a method-
ology of Lygon programming.

Finding ways of using new programming constructs can be highly non-trivial. Pro-
gramming idioms such as monadsin functional programming languages[141, 142] have
taken anumber of yearsto emerge. Other examples of non-obvious programming idioms
include combinator parsersin functional programming languages[78], differencelistsin
logic programming languages etc. [117, 134].

In our examples we develop a number of linear logic programming idioms— particu-
lar ways of using linear |ogic connectivesto achieveaparticul ar behavior. After introduc-
ing Lygon from the programmer’s perspective, we introduce a number of basic idioms.
We then illustrate applications of Lygon to Graph problems, Concurrency and Artificial
Intelligence. In the process of developing solutions to problems we develop program-
ming idioms and illustrate how they are used. We present a Lygon meta-interpreter and
then finish with some miscellaneous examples and discussion.

All of the programs in this chapter are automatically typeset from executable code
and have been run and tested under the Lygon interpreter.

158 CHAPTER 5. APPLICATIONSOF LYGON

History

Lygon grew out of some work on the proof-theoretic foundations of logic programming
languages. The fundamental ideabehind Lygon isthe completeness properties of certain
kinds of proofsinthelinear sequent calculus, and theinitial work inthisareawasdonein
the second half of 1990. Over the period of the next two years, the operational model of
the language was defined, revised, extended, and, in part, applied to other logics as well,
and the language received its name over dinner one night late in 1992,

Thefirst Lygon implementation appeared in the following year, although there were
still some technical problems with the operational semantics, which were ironed out in
early 1994, and a prototype implementation was compl eted later that year.

Lygon the programming language is named after Lygon Street. Lygon street is close
to Melbourne University and is known for its restaurants and cafes. Thereisalso aLy-
gon Road in Edinburgh which isfamiliar to Harland and Pym. Current information about
Lygon can befound ontheweb [147]. Information on the Lygon|anguage and implemen-
tation can be found in [146].

5.1 Lygon - A Programmer’s Per spective

It isworth emphasising that at this stage of the language’s devel opment our primary aim
isto experiment with the linear logic features of the language and as a consequence the
other aspects of the language are not as important. In the design and implementation of
the language we have inherited freely from Prolog. For example, the handling of I/O is
impure and thelanguageis not statically typed or moded. A rough slogan that has guided
thedesignto dateis” Lygon = Prolog + Linear Logic” . Sincethelinear logic aspectsare
orthogonal to issues of types, modes and language purity thereis no reason for Lygon to
be impure — future work on Lygon may well adopt strong types and modes alaMercury
[132, 133].

5.1. LYGON - A PROGRAMMER'S PERSPECTIVE 159

Syntax

Lygon syntax issimilar to Prolog syntax with the main difference that goal s and the bod-
ies of clauses are a (subset) of linear logic formulae rather than a sequence of atoms.

Program clauses are assumed to be reusable (i.e. nonlinear). It is possible to specify
program clauses that must be used exactly once in each query. Thisis done by prefixing
the clause with the keyword linear.

Lygon syntax is described by the following BNF. The notation [x] indicates that x is
optional. Asistraditional in logic programming we use a reversed implication (+—) to
write clauses. We define F' <— G as shorthand for [(G — F).

Note that the following syntax isasubset of thefull Lygon, syntax derived in section
3.11. This syntax describes what the Lygon interpreter handles. It differs from the full
language by the omission of

1. Program clauses of theform C & ... & C),

2. Goalsof theform D —o (G —these can be replaced with D+ 2 G.
3. Goalsof theform ?¢¢

4. Godlsof theform VzG

5. Goals of theform D+ —two special cases (neg A and ? neg D) are handled.

G = G@GRG|IGaeG|G&G|Ge G|!aG
|?7negD |1| L|T|A|negA
D := [linear] (A1%9...°A4, + G)

Lexical syntax and comments follow the underlying Prolog system. For example:
p < ¢q(X) isavaid program clauseand p @ (¢(1) ’® (e @ b)) isavalid query.

Semantics

The semantics of Lygon from the programmer’s perspective can best be explained by
recourse to an abstract interpreter. An abstract Lygon interpreter operates in a simple

cycle:

160 CHAPTER 5. APPLICATIONSOF LYGON

1. Sdlect aformulato be reduced
2. Reduce the selected formula

This repeats until there are no goals | eft.

The selection step does not occur in Prolog. Asdiscussed in section 4.4, aLygon goal
may consist of a number of formulae. At each step, we reduce one of these formulae.
In general which formula we choose to reduce first can make a difference to whether a
proof is found. The Lygon interpreter thus may need to select a formulae, and — if the
proof attempt fails— backtrack and select another formula.

The interpreter attempts to reduce this nondeterminism where possible using known
properties of linear logic. Thisis outlined in section 4.4 and is summarised below.

After selecting aformulaethe interpreter reduces the selected formula. Thereduction
used isdependent entirely on thetop level connective of the selected formula. Intherules
below we denote the linear context (i.e. the rest of the goal and any linear parts of the
program) by C.

When we say “ ook for a proof of ...” we mean that the goals indicated replace the

goal being reduced. The reduction of aformulain aLygon goal is governed by the fol-
lowing rules:

A® B: Split C into C'1 and C2 and look for proofsof (C'1, A) and (C2, B).
A B: Look for aproof of (C, A, B).

A & B: Look for proofsof (C, A) and (C, B).

A @& B: Look for either aproof of (C, A) or aproof of (C, B).

T: The goal succeeds.

1L: Look for aproof of (C).

1: The goal succeedsif the context C' is empty.

A: resolve (see below).

5.1. LYGON - A PROGRAMMER'S PERSPECTIVE 161

? neg A: Add A to the program and look for a proof of (C).

A: If C isempty then look for aproof of (A) otherwisefail.

EXAMPLE 17

Thegoa ((1@ L) (1& T)) hasanumber of proofs. One proof involves the following

steps:

1

Thereisonly one formulaso we select it. We then gpply the’s ruleyielding agoal
consisting of thetwo formulae1 @ | and1 & T.

There are now two formulae in the goal. Let us select the first. We apply the ®
rule yielding thegoal (L, (1& T)).

Assume we now decide to select the second formula. We apply the & ruleyielding
two goals: (L,1) and (L, T).

We now have two goals which need to be proved independently. L et us consider
the second godl first sinceit is the smpler of the two. We can choose the second
formula and apply the T rule. The second goal succeeds and we are left with the
first goal.

Theremaining goal is(_L, 1). Weattempt to select the second formulabut find that
the context is nonempty and we can not apply the 1 rule.

We backtrack and select thefirst formula The L rule yields the goal (1) which is
provable using the 1 rule.

Resolution

An atom can be proven in anumber of ways:

1

It can be a built in predicate. Builtins are equivalent to 1 in that they can only
succeed in an otherwise empty context. Builtins differ from 1 only in that they
may bind variables and may fail (for example, append([1],[2],X) binds X and ap-
pend([1],[2].[3]) fails).

162 CHAPTER 5. APPLICATIONSOF LYGON

2. Itcanmatchtheaxiomrule. Theaxiomrulestatesthat acontext of theform (A, neg B)
where A and B unify isprovable. Notethat the context must not have any formulae
other than A and neg B.

3. It can match aprogram clause. Inthiscase, we nondeterministically select a (unifi-
able) program clause, create fresh variablesfor it, unify its head with the atom and
replace the atom with its body. This behaviour isidentical to Prolog’s.

Multiple headed clauses (that is, clauses of the form p 9 ¢ < ...) are a straight-
forward extension. We create fresh variables for the clause and then unify each of the
atomsinits head with adifferent atom in the goal. If al unifications are successful then
the atoms unified against are replaced with the body of the clause.

EXAMPLE 18
Our goal is(p(1),q(2),¢(1)) and our program is

pP(X) 2 q(X) < is(X1,X+1) @ p(X1).

We select the program clause and attempt to resolve. Wefirstly unify p(X) andp(1)
yielding the substitution X = 1. We then attempt to unify ¢(2) and q(X). Since X has
been boundto1 this unification fails and we attempt to unify the other atom —q(1) —with
q(X). This succeeds and thetwo atoms—p(1) and q(1) —are removed and replaced with
the clause’s body yi€elding the goal (¢(2),is(X1, X + 1) ® p(X1)).

ExAmPLE 19
Consider the program:

toggle < (off ® neg on) @ (on ® neg off).
linear on.

The goal toggle’s off is provable as follows:

1. Firstly, we add the linear parts of the program to the goal. The linear program fact
(linear on) is equivalent to adding (neg on ®) to the goal.

2. Our goal then is (neg one toggles off). Using two applications of the’s rule we
obtain a goal consisting of three formulae: (neg on, toggle, off).

5.1. LYGON - A PROGRAMMER'S PERSPECTIVE 163

3. Thereisnever any point in selecting formul ae of theformneg A asthereisno cor-
responding reduction rule. Hence we consider the other two formulae. Selecting
off will not work - it is not abuiltin, there is no program clause and we can not use
the axiom rule.

4. We therefore select toggle. Using the program clause we obtain the goal
(neg on, off, ((off ® neg on) & (on® neg off))).

5. We select the compound formula and use the & rule to reduce the goal to
(neg on, off, (off ® neg on)).

6. We select the compound formulaand usethe® rule. In aoplying this rule we have
a choice as to how we split the context C'. The Lygon implementation does this
splitting lazily and deterministically. Inthiscaseit determinesthat no matter which
way we split the linear context a proof is not possible.

7. We backtrack and try the other alternative of the® rule. The goal is now
(neg on, off, (on ® neg off)).

8. We apply the ® rule. This gives us the two goals (neg on, on) and (off, neg off)
both of which are provable using the axiom rule.

Selecting the Formulato be Reduced

When selecting the formulato reduce in a goal, the Lygon interpreter uses a number of
heuristics to reduce nondeterminism (see section 4.4).

1. If thereareformulaeinthe goal whosetop level connectivesare asynchronousthen
we can select any one of these formulae and commit to this selection.

2. If wehavejust processed asynchronous connective and asub-formulaisitself syn-
chronous then we can select the sub-formulafor reduction immediately and com-
mit to this selection. Thisis due to the focusing property.

164 CHAPTER 5. APPLICATIONSOF LYGON

EXAMPLE 20

Inthegod (a ® b,c e d, p(X)) we can sdlect the second formula and commit to it. In
the god (a ® b, p(X) ® (¢(X) ® r(X))) if we select the second formula we may need
to backtrack and try the first; however after processing the outermost ® we can safely
select the sub-formulaq(X) ® r(X) using focusing.

Built In Predicates

The Lygon interpreter provides a number of primitive predicates for operations such as
arithmetic, meta-programming and 1/O. These are:

- print/1: printsits argument.
- nl/0: prints anewline.

- input/1: reads a Prolog term and bindsit to its argument. Thisis not usable under
the graphical user interface.

- system/1: passes its argument to the system to be executed as a command.

- i9/2: evaluatesits second argument as amathematical expression and bindsthere-
sult to the first argument. This predicate isinherited from Prolog.

- It/2: succeedsif bothitsargumentsare numbersand thefirst islessthan the second.
- builtin/1: succeedsif its argument matches a builtin.

- readgoal/1 and readprog/1: read terms and convert them to Lygon goals and pro-
grams respectively. The difference from input/1 is that atoms are tagged. Exam-
ple: If theusertypesp * g # r. thenthecal toreadgoal/l returns
at om(p) *at om(q) #at on(r) . These are not usable under the GUI.

- prolog/l: passes the argument for evaluation by the underlying prolog system.
This can be used to extend the set of builtins.

- tcl/1: passesitsargument to TCL/Tk for evaluation. This can be used to do graph-
ics from within Lygon or to extend the user interface.

5.1. LYGON - A PROGRAMMER'S PERSPECTIVE 165

- call/l: call(X) isequivalent to X. It is needed since internally Lygon represents
the atomic goal p(X) as atom(p(X)).

Inadditionto the built in predicatesthe example programsgiven will assumethe pres-
ence of the standard Lygon library shown in program 1. Note that a number of the pred-
icates are impure and typical of Prolog code.

5.1.1 TheLygon Implementation

The Lygon implementation (current version: 0.7.1) consists of two components:
1. The Lygon interpreter, and
2. A user interface.

TheLygoninterpreter is structured as a Prolog meta-interpreter. The emphasisison ease
of implementation rather than on performance or robustness. The interpreter iswritten
in BinProlog' and consists of some 724 lines of code?.

The core of the interpreter is essentially “just” an implementation of the rules of M
which were derived in chapter 4 (see figure 4.1 on page 122).

The user interface iswritten in TCL/Tk? and consists of some 591 lines of code. The
graphical user interface isdepicted in figure 5.1. The user interface and interpreter com-
municate via Unix pipes.

The system integrates the Lygon four port debugger developed by Yi Xiao Xu [153].
The debugger provides an execution trace which can be filtered according to a number
of criteria

The Lygon programs presented were mostly tested under Lygon 0.7.1. A few (those
requiring textual input for example) were run under Lygon 0.4. The implementation is
available from the Lygon World Wide Web page [147] at
http: //ww. cs. nu. oz. au/ ~“w ni kof f /| ygon. For more details on the Ly-
gon implementation and its use see [146].

LAvailablefromht t p: // cl ement . i nf 0. unonct on. ca/ “t ar au/
2As counted by we.
3Availablefromht t p: / / www. sunl abs. com 80/ research/tcl/

166 CHAPTER 5. APPLICATIONSOF LYGON

Program 1 Standard Lygon Library
Lygon Sandard Library

Negation as failure
not(X) < once((call(X) ® eq(Y,succeed)) @ eq(Y fal)) ® eq(Y fail).

var(X) « not(not(eq(X,1))) ® not(not(eq(X,2))).

le(X,Y) < It(X,Y) @ eq(X,Y).
gt(x,Y) « It(Y X).
ge(X,Y) < It(Y X) @ eq(X,Y).

output(X) « (!(print(X) ® nl)).
repeat <— 1 @ repeat.

sort([1.[]).
sort([X],[X]).
sort([X,Y|X9g],R) «+— halve([X,Y|X¢g],A,B) ® sort(A,R1) ® sort(B,R2) ® merge(R1,R2,R).

merge([],X,X).

merge([X|Xs],[],[X|Xs]).

merge([X|Xs],[Y|YS],[X|R]) + le&(X,Y) @ merge(Xs,[Y|Y9],R).
merge([X|Xs],[Y|YS],[Y|R]) «+ gt(X,Y) ® merge([X|Xs],YsSR).

halve([],[],[])-
halve([X],[X],[])-
halve([X,Y|R],[X|A][Y|B]) « have(RA,B).

append([].X,X).
append([X|X9],Y,[X|Z]) < append(Xs,Y,Z).

reverse(X,Y) < var(Y) ® rev(X,[],Y).
reverse(X,Y) < not(var(Y)) ® rev(Y,[],X).

rev([],X,X).
rev([X|Xsg],Y,R) < rev(Xs,[X|Y],R).

member(X,[-|Y]) < member(X,Y).
member (X,[X]-]).

51. LYGON - A PROGRAMMER’'SPERSPECTIVE 167

Figure 5.1 The Lygon User Interface

jquary fvar fablas | Oew

| |] 1] 1 e

| |] 1] 1 e

| |] 1] 1 s

| |] 1] 1 i

I | LA I

Debug; . Wich (nchades subges | 1 Bherer (o msbgols) 1 Trace {mverything}

Show: | | Oear | update

Watch: | Qe | Uptiate
Sop. | medwaich mp | Show .. e | moncwear | comeses

Results + o - i Fair irterrup! | Do al | ear ol | Clear gl

Walcoma o Lggon!

Muthora:! Hichaal Winikoff {winikoffics.mo. o2 . ad)
ard ¥i Floo Hu (dabogger ocoda)

Lygon Homs Dage! hoop:f/we. os.md.oz.au/-winlkof s lpgon
Lygon interpratar 0.7.1 ready

168 CHAPTER 5. APPLICATIONSOF LYGON

5.2 Basic Techniques

We begin by presenting anumber of simple Lygon programs. Some of these demonstrate
generally useful programming idioms which will be used in later sections.

The main theme in this section is the simple manipulation of the linear context. The
linear context isamultiset of linearly negated atoms and can be thought of asacollection
of atomic facts. The two differences between the linear context and a program are that
() adding facts to the linear context isalogically pure operation, and (ii) linear facts are
consumed when they are used. Thissecond differenceiscrucia inthat it allowsreplace-
ment of old information with new. By contrast, classical logic allows pure addition of
facts (using implication) but only allows for the extension of the program. Aswe shall
see, the linear context can model general state based operations.

We begin with asimple example which usesthe linear context to store some state in-
formation. Program 2 (taken from [68, 70]) storesasingle bit of information and toggles
it. Theeffect of acall to toggle in acontext containing the fact off isto consume the fact
and add the fact on.

Note that since Lygon programs are implicitly nonlinear we must supply the initial
state as part of the goal. Adding off as a (non-linear) program clause would mean that
even after a toggle we could still prove off from the clause. Although it is possible to
avoid this by having off asalinear program clause we choose not to do this. The prob-
lem with using linear program clausesisthat every query gets given an initialised linear
context. Using linear clauses can make the program easier to run for a given goal but
reduces our ability to make other queries.

The derivation of the goal neg off » toggle » on has been described in example 19.
The key point is that once toggle has been called it is no longer possible to prove off.

Program 2 illustrates a common special case of ®. As noted in the previous section,
the proof of thegoa A ® B partitions the context between the proof of A and the proof
of B. There aretwo special cases that are common in Lygon programs. These are when
A isabuiltin and when A is an atom which has corresponding linear facts. In the first
case the entire context gets passed to B since builtins are logically equivalent to 1 and
can not use any of the context. In the second case asingle linear fact matching A isused

5.2. BASIC TECHNIQUES 169

Program 2 Toggling State
toggle « (off ® neg on) & (on ® neg off).

go < neg off *» toggle & show.

show <« off @ print('of f’).
show < on ® print('on’).

by the axiom rule in the proof of A and the remaining context is used in the proof of B.

For example consider the goa (neg p(1) , neg q, p(X) ® print(X) ® T) The only
formula which can be usefully selected is the third. This gives us the two goals (neg
p(1), p(X)) and (neg q, print(X) ® T). Thefirstis provable using the axiom rule which
unifies X with 1. In proving the second goal we again use the ® rule yielding the two
new goals(print(1)) and (negq, T). Thefirst of these succeedsand asasideeffect prints
1. The second succeeds using the T rule.

The net effect of p ® G (where p is not defined by a program clause) isto remove a
linear fact matching p from the context and pass the rest of the context to G.

Another connectivein Lygonthat isoften usedinaparticular way is’. Recall that the
proof of thegoal A’e B simply looksfor aproof of A, B. If A and B areboth atomswhich
have matching program clauses then the two formulae evolve in parallel. A commonly
occurring special caseis(neg A) 2 B which addsthelinear fact A to the context and then
continueswith B. Thisisequivalentto A — B.

A third connective that is often used in a certain way is!. Recall that the goa ! G
can be proven if (a) G can be proven, and (b) the linear context isempty. Thus! isused
to ensure that the goa G is executed with an empty linear context. The pattern H @ !
G forces H to consume all of the linear resources. An example is the coding of output
in program 1 where the goal ! (print(R) ® nl) ensures that the linear context has been
consumed. Thisisimportant since otherwise it is possible for print to succeed and pass
linear resources to nl. Only when nl is executed does it become apparent that the linear
resources cannot be consumed and the computation backtracks. For example, the goal
(L ®neg p) e (print(x) ® nl) prints two xs followed by a newline whereas the goal
(L @ neg p) 2 I(print(x) ® nl) printsasingle x followed by anewline.

170 CHAPTER 5. APPLICATIONSOF LYGON

Before we move onto look at how linear facts can be collected, it isworth noting that
since Lygon is an extension of Prolog, any (pure) Prolog program will run under Lygon.
In general Lygon's ® connective substitutes for Prolog’s conjunction (“, ”). Program 3
isawell known Prolog program transcribed into Lygon.

Program 3 Naive Reverse

append([].X,X).
append([X|X9],Y,[X|Z]) < append(Xs,Y,Z).

nrev([L.[]).
nrev([X|Xs],R) <+ nrev(Xs,R2) ® append(R2,[X],R).

The linear context can be used to store an initia set of facts which give the input to
the program and after the program has run could contain the resulting output. We need
to be able to report on the contents of the linear context. This can be done by collecting
the linear facts into a data structure and then returning it or printing it.

Consider alinear context which isknown to contain any number of unary p factsand
binary q facts. One way of collecting these into alist isthe following (see program 4):

collect(X,Y) < p(A) ® collect([p(A)|X]1,Y).
collect(X,Y) < q(A,B) ® collect([q(A,B)|X],Y).
collect(X,X).

This predicate is called as collect([],X). The linear context is consumed and alist is
bound to X. An alternative encoding is

collect([p(A)|X]) < p(A) ® collect(X).
collect([q(A,B)|X]) + q(A,B) ® collect(X).
collect([]).

Here, the predicate is caled as collect(X) and X is bound to alist as before. Note
that the program clause collect([]) isequivalent to collect([]) «+ 1. Thisclause can only
succeed once the linear context has been emptied.

One problem with both of these definitions concerns backtracking. The elementsof a
multiset are not in a defined order whereas the elements of alist are. In converting from

5.2. BASIC TECHNIQUES 171

amultiset to alist we are adding an order. Both versions of collect given are capable of
generating any order and will do so upon backtracking. For example, given the context
(p(2),p(2),a(a,b)) both versions of collect will generate al six orderings of the elements.
If wewould like to be able to find alternative solutions to the Lygon query which gener-
ated the relevant linear context then this behavior is a problem — before returning a new
solution we will be given permutations on the order of the elements in the multiset.

We solve this problem by using once to select an arbitrary ordering of the multiset
and prune away other solutions. Program 4 shows two different ways of coding collect.
These two differ in the order of the solutions returned. Since the ordering is arbitrary
anyway thisis not important.

The goal gol(X) has the single solution X = [c,b,a,a] and the goa go2(X) has the
singlesolution X = [a,a,b,C].

Program 4 Collecting Linear Facts
gol(X) «+ nega’® neg b’e neg ¢’ neg a’e collect([],X).

First version -- called as collect([],X)
collect(X,Y) « get(Z) ® collect([Z|X],Y).
collect(X,X).

get(X) + once((eq(X,d ® a) ® (eq(X,b) ® b) & (eq(X,c) ® c)).

go2(X) <— neg a’e neg b’ neg c 2 neg a’g collect(X).
Second version -- called as collect(X)

collect([Z|X]) < get(Z) ® collect(X).

collect([]).

A related problem which is non-trivial to solvein Prolog — and which has been used
to motivate the need for combining embedded implications and negation as failure—in-
volves determining whether a number of clauses of the form r(1), ... ,r(n) contains an
odd or even number of clauses.

The following proposed solution [25, 40] uses implication to add a mar k to facts
which have been processed and uses negation as failure to ensure that marked facts are

172 CHAPTER 5. APPLICATIONSOF LYGON

not processed a second time.

even :- not odd.
odd :- select(X), (mark(X) => even).
select(X) :- r(X), not mark(X).

The Lygon solution to this problem simply combines programs 2 and 4. We need
to collect each program clause; however instead of constructing a list of the collected
clauseswe ssimply toggle an even/odd indicator for each clause collected, see program 5.

The goal neg count(even) '® neg r(1) '® neg r(2) = check(X) returns the answer
X'= even. Once check(X) has consumed all of the r (i) factsit reduces (using the second
clause) to count(X) and the axiom rule unifies X with the odd/even indicator stored in the
linear fact.

Program 5 Counting Clauses
check(Y) < once(r(X)) @ (toggle e check(Y)).
check(X) « count(X).

toggle < (count(even) ® neg count(odd)) & (count(odd) ® neg count(even)).

An alternative solution in Lygon which is closer to the solution using implications
and negations is given in program 6. An empty context (i.e., zero clauses) is even. A
context is even if the context with one lessfact isodd and vice versa. The goal neg r(1)
wneg r(2) e check(X) returns X = even.

Program 6 Counting Clauses — Alternative Version
check(even) + even.
check(odd) « odd.

even.
even < once(r(X)) ® odd.
odd < once(r(X)) ® even.

A property that isused in programs 4 and 5 isthat al linear facts must by default be
used exactly once. In certain situations (for example finding paths as described in the

5.2. BASIC TECHNIQUES 173

following section) it is desirableto alow facts to be used at most once, that is, we would
liketo beabletoignore certainfacts. Thisbehavior isknown asaffinesinceitisprecisely
what affine logic [89] provides.

We can simulate affine facts by using T. Recall that T succeeds in any context. In
some sense it can be thought of as a “cookie monster” which consumes all the linear
resourcesit is given.

If we have agoal GG and a linear context I' thenthegoal I' 2 (G ® T) dlows G to
useasubset of I'. Intuitively, I" issplit between G and T —any linear facts which are not
used in G are consumed by T.

Although intuition suggests that T must occur “after” G, in actual fact thegoa I' ®
(T ® G) works equally well. What happens is that the tags described in chapter 4 are
used to pre-weaken I'. Thelazy T rule marksall of theformulaeinT" as affine and then
passesthemto G.

A useful variation on this allows us to combine affine and linear facts. Suppose A
contains linear formulae which must be used and I contains formulae which we may
ignore. Then the formula

e (T (A®G))

captures the desired behavior. For example, in program 7 gol and go2 succeed but go3
fails. This sort of behavior isused in program 12.

Program 7 Affine Mode
gol<negpe (T ® (neg g2 (0))).
go2<negp® (T ® (negg’e (g ® pP))).
go3 < neg p® (T ® (neg g2 (p))).

We have seen how the linear context can be used to store simple state. We now show
how alibrary of operations can be constructed which uses the linear context to simulate
an imperative store.

Consider a binary linear fact m(A,V) where A represents the address of the memory
cell and Vitsvalue. Thegoa m(1,7) — G adds memory cell 1 containing a certain well
known value and proceeds with G. In Lygon thiswould be written asneg m(1,7) 2 G.

174 CHAPTER 5. APPLICATIONSOF LYGON

The goa m(1,X) ® G binds X to the value in memory cell 1 and proceeds with G.
Note that this read operation is destructive. In order to allow G to re-read the memory
cell we must recreate it using agoal of the form m(1,X) ® (neg m(1,X) » G).

These goals can be encapsulated into an abstract data type for an imperative store
using the operations newcell/3, lookup/3 and update/3. Note that we need to be able to
specify that goals happen in a certain sequence. We do this by using a continuation pass-
ing style.

Program 8 State Abstract Data Type

newcell(Id,Value,Cont) +— neg m(ld,Value) s call(Cont).
lookup(ld,Value,Cont) <— m(ld,Value) ® (neg m(ld,Value) 2 call(Cont)).
update(ld,NewValue,Cont) < m(ld,.) ® (neg m(ld,NewValue) 2 call(Cont)).

As an example using the above code, consider the following simple imperative code
to sum alist of numbers

sum := 0;

while sumist not enpty do

begi n
sum : = sum + head suniist;
sumist :=tail sumist;
end

return sum

This can be written in Lygon quite smply (see program 9). Notethat weneeda T in
the second clause of sumlist to delete the memory cells once we are finished with them.
This could be added to the state ADT as another operation. The goal sum([1,5,3,6,7] ,X)
yields the solution X = 22.

Program 9 State Based Sum
sum(List,Result) < newcell(sum,0, newcell(sumlist,List, sumlist(Result))).
sumlist(R) «— lookup(sumlist,[N|Ns], lookup(sum,S,

(is(S1,S+N) ® update(sum,S1, update(sumlist,Ns, sumlist(R)))))).
sumlist(R) + lookup(sumlist,[], lookup(sum,S, eq(S,R) ® T)).

5.2. BASIC TECHNIQUES 175

The final example in this section applies the state based idiom to solve a problem
with I/O. Programs in an impure logic programming language such as Prolog do input
and output using side effects. One problem with this is that output performed in sub-
computations which fail and backtrack is visible. The output produced by a Prolog pro-
gram which backtracks over |/O operations can be confusing.

InLygonitispossibleto maintainan output listinthelinear context and only print the
list once the relevant sub-computation has succeeded. Thistechniqueis particularly use-
ful in concurrent Lygon programs (see section 5.4) which tend to exhibit alarge number
of solutions corresponding to al possibleinterleaved executions.

We begin by creating alinear fact t([]). Goals of the form print(X) ® G are replaced
by pr(X,G) where pr is defined as (see program 10):

pr(X,G) «+ t(R) ® (neg t([X|R]) e call(G)).

Note that pr isjust an imperative style lookup followed by an update. The query go
succeedsonceand prints2 and 3. If print had been used it would have printed 1 aswell.

Theroleof the | ® t(X) ®... isto alow the goa (backtrack) to succeed normally
and collect the printing to be done using a proof of the following form:

. neg (23], 1(x) 1 XE123
1,1 neg t([2,3]),t(X) ® . ..
1, neg t([2,3]), L RMIX) ...

" ©—R
R

backtrack, neg t([j), L @ t(X) ® . ..

A general idiomthat isdemonstrated in thisprogram (and in program 9) istheuseof a
continuation passing styleto encode sequentiality. If wewishto makeachangetothelin-
ear context and then run agoal then we cannot write makechange ® goal since additions
made to the context in makechange are not visible to the goal. If we write makechange
s goal then the changes made are visible to the goal but the goal could also use the old
state. The way to obtain correct sequencing isto modify makechange to accept an extra
argument and to call that argument when it has finished changing the context. We then
write makechange(goal).

176 CHAPTER 5. APPLICATIONSOF LYGON

Program 10 Batching Output

0o < neg t([]) @ backtrack 'z (L ® t(X) ® !(reverse(X,RX) ® print(RX) ® nl)).
pr(X,G) «+ t(R) ® (neg t([X|R]) & call(G)).

backtrack < pr(1,fail) @ pr(2,pr(3,1)).

5.3. GRAPHS 177

5.3 Graphs

Graphs are an important data structure in computer science. Indeed, there are many ap-
plications of graph problems, such as laying cable networks, evaluating dependencies,
designing circuits and optimization problems. The ability of Lygon to naturally state and
satisfy constraints, such as that every edge in a graph can be used at most once, means
that the solution to these problemsin Lygon is generally ssmpler than in alanguage such
as Prolog.

This observation was made independently by Paul Tarau in the later versions of Bin-
Prolog which include aform of linear* predicates.

One of the simplest problemsinvolving graphsisfinding paths. The standard Prolog
program for path finding is the following one, which simply and naturally expresses that
the predicate pat h isthe transitive closure of the predicate edge, in a graph.

path(X Y) :- edge(XY).
pat h(X,Y) :- edge(X 2), path(ZY).

Whilst this is a smple and elegant program, there are some problems with it. For
example, the order of the predicatesin the recursive rule isimportant, as due to Prolog’s
computationrule, if thepredicatesareinthereverseorder, thengoassuchaspat h(a, Y)
will loop forever. Thisproblem can be avoided by using a memoing system such as XSB
[144], or a bottom-up system such as Aditi [139]. However, it iscommon to re-write the
program above so that the path found isreturned as part of theanswer. In such cases, sys-
tems such as XSB and Aditi will only work for graphs which are acyclic. For example,
consider the program below.

path(X Y,[X Y]) :- edge(XY).
pat h(X, Y,[X| Path]) :- edge(X, Z), path(Z, Y, Path).

If thereare cyclesinthegraph, then Prolog, X SB and Aditi will all generateaninfinite
number of paths, many of which will traverse the cycle in the graph more than once.

4Actually affine

178 CHAPTER 5. APPLICATIONSOF LYGON

The problem isthat edges in the graph can be used an arbitrary number of times, and
hence we cannot mark an edge as used, which is what is done in many imperative so-
lutions to graph problems. However, in alinear logic programming language such as
Lygon, we can easily constrain each edge to be used at most once on any path, and hence
eliminate the problem with cycles causing an infinite number of paths to be found.

The code is smple; the main change to the above isto load a “linear” copy of the
edge predicate, and use the code as above, but trandated into Lygon. Most of thisismere
trangdliteration, and is given in program 11.

Figure5.2 Graph 1

N
|

e

The extra predicate trip is introduced so that not every path need use every edge in
the graph. Aswritten in program 11, path will only find paths which use every edgein
the graph (and so path can be used directly to find Eulerian circuits, ie. circuits which
use every edge in the graph exactly once). However, thetrip predicate can ignore certain
edges, provided that it does not visit any edge more than once, and so the trip predicate
may be considered the affine form of the predicate path.

The goa graph (which describes figure 5.2) is used to load the linear copy of the
graph, and as this is a non-linear rule, we can load as many copies of the graph as we
like; the important feature is that within each graph no edge can be used twice. We can
thenfind all paths, cyclic or otherwise, starting at node a in the graph with thegoal graph
2 trip(a,_,P). This goal yields the solutions below.

P =[ab,c,d,e]
P=[ab,c,d,a]

5.3. GRAPHS 179

P=[ab,c,d]
P=[ab,c]
P=[ab]
We can aso find al cycles in the graph with a query such as graph ¢ trip(X,X,P)
which yields the solutions:
X=4a,P=[ab,cd,a]
X=b,P=[b,cda,b]
X=d,P=[dab,c,d]
X=c¢, P=[cd,ab,]

Program 11 Path Finding
graph «— neg edge(a,b) » neg edge(b,c) & neg edge(c,d) & neg edge(d,a) & neg edge(d.e).

Path: the naive path predicate. Note that in Lygon this handles cycles.
path(A,B,[A,B]) < edge(A,B).
path(A,B,[A|R]) < edge(A,C) ® path(C,B,R).

trip(X,Y,Z) + T @ path(X,Y,2).

This example suggests that Lygon is an appropriate vehicle for finding “interesting”
cycles, such as Hamiltonian cycles, ie., those visiting every node in the graph exactly
once. We can write such a program in a “generate and test” manner by using the path
predicate above, and writing atest to seeif thecycleisHamiltonian. Thekey point to note
isthat we can delete any edge from a Hamiltonian cycle and we are left with an acyclic
path which includes every node in the graph exactly once. Assuming that the cycleis
represented as a list, then the test routine will only need to check that the tail of the list
of nodesin the cycleisapermutation of thelist of nodesin the graph. Hodas and Miller
[70] have shown that such permutation problems can be solved smply in linear logic
programming languages by “asserting” each element of each list into an appropriately
named predicate, such as listl and list2, and testing that listl and list2 have exactly the
same solutions.

The code to do this assertion is below; note that this may be thought of as adata con-
version, from alist format into a predicate format.

180 CHAPTER 5. APPLICATIONSOF LYGON

perm([X|L],L2) < neg list1(X) » perm(L,L2).
perm([], L2) «+ perm1(L2).

perm1([X|]) < neg list2(X) = perm1(L).
perm1([]) + check.

Once both listsare loaded, we call the predicate check, which will ensurethat thetwo
lists are permutations of each other. This predicateis particularly ssmpleto write, and is
given below. Note that if the input is given as predicates (i.e., [1,2] would be rendered
as the multiset of linear facts list1(1) , list1(2)) rather than lists, then thisis all the code
that we would need to write:

check «+— list1(X) ® list2(X) ® check.
check.

Note that the second clause is equivalent to check «— 1 and will only succeed if the
linear context is empty. The definition of check is thus deterministic. The first clause
will succeed provided that there isa common solution to listl and list2; if thisis not the
case, then the only way to succeed isfor both predicatesto be exhausted. Hence, theonly
way for the test to succeed isif the two arguments to perm contain the same multiset of
elements—that is, they are permutations of each other.

An interesting point raised by thisexampleisthat the representation of the dataasre-
sources, rather thaninthetraditional list, ispotentially moreefficient. The most common
data structure used in Prolog programsis alist, and it seems that Prolog programmers
have a tendency to overuse lists. It is not uncommon to find that some general collec-
tion of objects has been implemented as a list, even when the order in which items are
represented is not important. Lists have the property that access to the nth element takes
n operations. However, if the same collection is represented as a multiset of formulae,
thenthereisthepossibility for moreflexible access, asthereisno order of accessimposed
by the framework. Furthermore, by careful utilisation of indexing techniques, it would
seem that it is possible to provide constant or near-constant time access to an arbitrary
element of the collection, and so Lygon has the potential for a more efficient represen-
tation of collections where the sequence of elementsis not important. This observation

5.3. GRAPHS 181

isborne out by the work in [137, 138] where a speedup factor of 25 is reported for small
Lolli programs (and alarger speedup is reported for larger programs).

The only remaining task to complete the code for the Hamiltonian cycle program is
to write the code to extract the list of nodes in the graph from itsinitial representation.
Asthis codeis not particularly insightful, we omit it for the sake of brevity and assume
that the nodes of the graph are given. The full Lygon program for finding Hamiltonian
cyclesis given below (program 12).

Therole of the T in go isto make the edge predicate affine (i.e., not every edge need
be used). Note that the nodes remain linear and so must be used. Given the query go(P),
the program gives the solutions:

P=[cdab,c]
P = [d,ab,c,d]
P = [b,c,d,a,b]
P=[ab,c,d,a]

Program 12 Hamiltonian Cycles
go(P) <— graph @ (T ® (nodes e hamilton(P))).

graph < neg edge(a,b) s neg edge(b,c) s neg edge(c,d) s neg edge(d,a).
nodes < neg node(a) 2 neg node(b) *® neg node(c) = neg node(d).

path(X,Y,[X,Y]) < edge(X,Y).
path(X,Y ,[X|P]) < edge(X,Z) ® path(Z,Y,P).

al_nodes([]).
al_nodes([Node|Rest]) < node(Node) @ al_nodes(Rest).

hamilton(Path) «— path(X,X,Path) @ eq(Path,[-|P]) ® al_nodes(P).

A problem related to the Hamiltonian path is that of the travelling salesman. In the
travelling salesman problem we are given agraph as before. However each edge now has
an associated cost. The solution to the travelling salesman problem is the (or a) Hamil-
tonian cycle with the minimal total edge cost. Given afacility for finding aggregates,

182 CHAPTER 5. APPLICATIONSOF LYGON

suchasfi ndal | or bagof in Prolog, which will enable all solutionsto a given goal
to be found, we can use the given program for finding Hamiltonian cycles as the basis
for asolution to the travelling salesman problem. Thiswould be done by simply finding
a Hamiltonian cycle and computing its cost. This computation would be placed within
afindal | , which would have the effect of finding all the Hamiltonian cycles in the
graph, aswell as the associated cost of each. We would then simply select the minimum
cost and return the associated cycle. Note that as thisis an NP-compl ete problem, there
IS no better algorithm known than one which exhaustively searches through all possibil-
ities.

In order to directly implement the solution described above, aggregate operators in
Lygon are needed. Asthese are not yet present we do not give the code for this problem
here.

Another useful algorithm operating on graphs is the topological sort, which is often
applied to the resol ution of dependency problems. One application of topological sorting
isto find an ordering of a set of dependent actions such that each action is preceded by
the actions on which it depends.

Theinput to the algorithm isadirected acyclic graph (DAG), and the output is an or-
dering of the nodesinthe graph. Thealgorithmtotopologically sortaDAG isasfollows:

1. Select arandom node,
2. Recursively topologically sort its descendants,

3. Add the node to the front of the outpuit.

This repeats until al nodes have been processed. Note that any node with multiple par-
ents will be processed more than once. Attempting to process a node for the second or
subsequent time should succeed without doing anything. This behavior is given by get-
node and getlink. If the node has aready been processed then getnode succeeds returning
theempty list. Thecall to getlink with an empty list returns an empty list of descendants.
The net effect isthat topologically sorting a node which has aready been processed suc-
ceeds quietly. Note the use of the operator once; the goal once(G) is operationaly the
same as the goal G, except that once(G) will succeed at most once. In this context the
once is used to simulate an if-then-else construct.

5.3. GRAPHS 183

The predicate sort selects arandom unprocessed node and topologically sortsits de-
scendants (using tdl). This repeats until the graph has been completely processed. The
predicate tsl topologically sorts each node in alist of nodes using ts. The codeis given
in program 13.

Figure 5.3 Graph 2

—& D

e—ef

\d/*
\9

OB

For a given graph there are many orderings which are valid topological orderings.
For example using the graph in figure 5.3 we can apply atopol ogical sort using the query
sort(X) which returns the first solution X = [g,f,e,d,c,b,a].

If we ask the system to find alternative solutions it comes up with the following dis-
tinct solutions:

X=g,(f,ed.c,b,a]
X=g,f,edb,c,a]
X=[g,f,eb,d.c,a]
X = [f,0,ed,c,b,a]
X = [f,0,e,d,b,c,a]
X = [f,0,eb,d,c,a]

Many graph search problems make use of either adepth-first search or abreadth-first
search; given a set of alternative paths to follow, a depth-first search will generally ex-
plore children before siblings, whereas a breadth-first search will generally explore sib-
lings before children (an analogy is that depth-first search is like an escapee from ajail
who triesto get as far away from the jail as possible, whereas breadth-first search islike
the police looking for the escapee).

Clearly for either of these processes it is important to detect cycles in the graph, in

184

CHAPTER 5. APPLICATIONSOF LYGON

Program 13 Topological Sorting

linear node(d,[d]).
linear node(a,[d]).
linear node(e,[€]).
linear node(b,[b]).

linear node(f,[f]).

linear node(c,[c]).
linear node(g,[q]).

linear link(a,[b,c]).
linear link(b,[€]).
linear link(c,[d]).
linear link(d,[g,€]).
linear link(e,[g,f]).
linear link(f,[]).
linear link(g,[]).

go < sort(X) ® output(X).

sort(R) «— node(_,[N]) ® link(N,L) ® td(L,R1) ® sort(R2) ® append(R1,[N|R2],R).
sort([]).

ts(Node,R) < getnode(Node,N) ® getlink(N,L) ® td(L,R1) ® append(R1,N,R).

tl([1,[1)-
tsl([N|Ns],R) « ts(N,R1) ® tsl(Ns,Rs) ® append(RL,RsR).

getlink([1.[1).
getlink([N],L) « link(N,L).

getnode(N,R) «— once(node(N,R) & eq(R,[])).

order to avoid infinite searches. As above, the ability to specify that each edge be used
at most once ensures that the search will aways terminate.

In program 14 the predicate search does the searching. Itsfirst argument isalist of
nodesto be explored, itssecond argument isalist of the nodeswhich have been examined
and itsthird argument isthe node being searched for. At each step we take the head node
to be explored and (if it is not the desired node) add its descendants to the list of nodes
to be explored using expand.

The difference between a breadth-first and depth-first (program 15) searchistheorder
in which the new child-nodes are appended with the old list. Note that this program can
be easily generalised to other sorting orders —for example, best first search.

Asin program 13 we use getnode to handl e nodeswhich are expl ored more than once.
The code is given below. Given the query find(s,f) the breadth-first version explores the

5.3. GRAPHS 185

nodes [s,0,m,p,q,n,f] and the depth-first version explores the nodes [s,0,p,f]. The graph
represented by the collection of linear clausesis given in figure 5.4.

/\
N7

Figure5.4 Graph 3

186 CHAPTER 5. APPLICATIONSOF LYGON

Program 14 Breadth First Search
find(S,E,P) « search([S],P,E).
find(S,E) «+ find(S,E,P) ® print(P) ® nl.

expand([Y|Y s],Nqueue) < getnode(Y, L) ® append(Y's, L, Nqueue).

The top in the following clause consumes unused nodes.
search([K|Xg], [K], K) < T.
search([X|Xg], [X|P], K) + not(eg(K,X)) ® expand([X|Xs], Ng) ® search(Ng, P,K).

This allows nodes to be referenced multiple times.
getnode(N,R) +— once(node(N,R) & eq(R,[])).

linear node(s, [o,m]).
linear node(m, [n,f]).
linear node(n, [f]).
linear node(o, [p,q]).
linear node(p, [f]).
linear node(q, [f]).
linear node(f, []).

Program 15 Depth First Search
find(S,E,P) < search([S],P,E).
find(SE) « find(SE,P) ® print(P) ® nl.

expand([Y|Y s],Nqueue) < getnode(Y, L) ® append(L, Y's, Nqueue).

The top in the following clause consumes unused nodes.
search([K|Xg], [K], K) < T.
search([X|Xg], [X|P], K) + not(eg(K,X)) ® expand([X|Xs], Ng) ® search(Ng, P,K).

This allows nodes to be referenced multiple times.
getnode(N,R) +— once(node(N,R) @ eq(R,[])).

5.4. CONCURRENCY 187

5.4 Concurrency

It isfolklore that linear logic is good at expressing concurrency. Let us begin by distin-
guishing between concurrency and parallelism since (in this context) linear logic does
not actually appear to offer any advantages to the latter. A concurrent program is one
wherethelogic of the program involves multiple, independent threads of activity. Exam-
plesinclude any distributed system, an email system, multi-player games etc. Typically,
the computationisaffected by timingissuesand isnon-deterministic. A parallel program
is one which is run on multiple processors with the aim of attaining better performance.
Often, the result of the computation is deterministic.

A number of linear logic programming languages are targeted at concurrent applica-
tions(e.g. ACL [85, 88,128] and LO [7-10, 29, 42]) and it has been shown that much of
the 7 calculus can be mapped into linear logic [108].

In this section we show how various aspects of concurrency can be expressed in Ly-
gon. Some aspects of concurrency that we shall look at are [17]:

1. Specifying multiple processes,
2. Communication, and

3. Synchronisation.

These are demonstrated in programs 16 and 17.

We also show how arange of other paradigms for concurrent programming can be
simply and easily embedded in linear logic. Specifically, we embed the Chemical reac-
tion metaphor for concurrent programming [22], the co-ordination language Linda [27,
28], the Actors paradigm [2] and Petri Nets[120]. We finish this section with a solution
to the dining philosophers problem.

We begin with a simple example which illustrates how we can program two commu-
nicating processes in Lygon. Recall that a clause of theforma e b < Gisappliedto a
goa of theforma, b, I' toyield thenew goa G, T'.

Program 16 defines two communicating processes —a consumer and a producer. The
first aspect of concurrent programming — specifying multiple processes — is ssimple in
Lygon. A goal of theform F @ G specifies that F and G evolve concurrently.

188 CHAPTER 5. APPLICATIONSOF LYGON

Communi cations between thetwo processesisachieved by adding and removing goal s.
It isalso possibleto communicate using linearly negated atomswhich havethe advantage
of being more obviously passive messages. The disadvantageis primarily acluttering of
the syntax.

The first clause of produce states that under appropriate conditions an ack message
and a produce(3) process can evolve to produce(2) and amesg(1).

Note that unlike standard concurrent logic programming languages such as Strand
[43], GHC[125, chapter 4], Parlog [50] and [125, chapter 3] and Concurrent Prolog [125,
chapters 2 & 5] communication is orthogonal to unification. Unification (the underlying

primitive operation of logic programming) is not tampered with.
The goa go(3) behaves as follows:

go(3)

— produce(3) *» consume(0) & ack

— produce(3) , consume(0) , ack

— 1t(0,3) ® is(N1,3-1) ® (mesg(1) = produce(N1)) , consume(0)
— mesg(1) r® produce(2) , consume(0)

— mesg(1) , produce(2) , consume(0)

— is(N1,0+1) ® (consume(N1) > ack) , produce(2)

— consume(1) e ack , produce(2)

— consume(1) , ack , produce(2)

— consume(3) , ack , produce(0)
— consume(3) , finished
— print(3) ® nl.

Program 16 Communicating Processes
go(N) «+— produce(N) e consume(0) e ack.

produce(N) 2 ack < It(O,N) ® is(N1, N-1) ® (mesg(1) = produce(N1)).
produce(0) & ack < finished.

consume(N) e mesg(X) « is(N1,N+X) ® (consume(N1) o ack).
consume(N) e finished < print(N) ® nl.

5.4. CONCURRENCY 189

An important aspect of concurrent programming is mutual exclusion. The basic idea
isthat we have a number of processes. A section of each processisdesignated as acrit-
ical region. We need to guarantee that at most one process isin its critical region at a
giventime. This can be done by using alock — before entering its critical region a pro-
cess attempts to acquire the lock. If the lock can be acquired then the process proceeds;
otherwise it suspends and waits for the lock to become free.

In program 17 the lock is modelled by the goals ex and noex. Exactly one of these
should be present at any time. The presence of ex means that the lock is free and the
presence of noex that the lock has been acquired.

Processes access the lock using the predicates:

- ask(C) which attemptsto acquirethelock and call sthe continuation Cif the attempt
succeeds, suspending otherwise.

- rel(C) which releases the lock and calls the continuation C.

Note that the program uses the technique presented in program 10 to batch its output.
The predicate pl acquires the lock, prints’ pla’ , prints’ plb’ and then releases the
lock. Note that in order for the lock to actually be useful we need to take two separate
printing actions. The predicate p2 acquiresthe lock, prints’ p2a’ and then releases the
lock.

There arethreevisible eventsthat occur. Since pla must occur before plb thereare
threepossible executions. Theuse of thelock preventsp2a from occurring betweenpla
and plb. Thiseliminates one of the possible executionsleavingpla, plb, p2aand
p2a, pla, plb aspossibleresults.

Note that because the Lygon implementation uses “don’t know” non-determinism it
ispossibleto backtrack and enumerate all possible executions of the concurrent program.
Thisalowsusto verify that the programis correct by automatically exploring every pos-
sible execution.

We have seen how Lygon can expressthe basic mechanismsof concurrency. Inthere-
mainder of this section we provide evidencethat linear logic in general and Lygon specif-
ically is expressive in this domain. We embed a number of paradigms for concurrency
in Lygon. Aswe shall see, in all cases the embedding is direct and straightforward.

190 CHAPTER 5. APPLICATIONSOF LYGON

Program 17 Mutual Exclusion
ex 2 ask(C) «+ noex 2 call(C).
noex g rel(C) < ex 2 call(C).

go(X) «+— ex e ple p22 negt([]) ® (neg ex ® t(X)).

pl < ask(t(X) ® (neg t(pla.X) & (t(X) @ (neg t(plb.X) & rel(L))))).
p2 +— ask(t(X) ® (neg t(p2a.X) e rel(L))).

The chemical reaction paradigm [22] views a concurrent program as a solution of re-
actingmolecules. Chemical reactions between moleculesarelocal. Thisparadigmforms
the basis of the language Gamma[18].

Program 18 gives an example of asimple reaction. Note that since Lygon (like most
logic programming languages) is executed using backwards chaining on clauses the im-
plicationsarereversed. That is, aclause of theform a <— b indicatesthat a can be rewrit-
tento b. Inthe program 0% 0’2 h2 '@ h2 isrewritten first to 02 *® h2 "2 h2 and then to
h20 e h2o.

Program 18 Chemical Paradigm
0’9 0 < 02.
02 '@ h2 @ h2 + h20 2 h2o0.

go < 079 0’2 h272 h2 ' (neg h20 ® neg h20).

Another model for concurrency is the co-ordination language Linda [27, 28]. Linda
provides four primitive operations which can be added to any language to yield a con-
current programming language. Versions of Linda have been built on top of C, Scheme,
Modula-2, Prolog and other languages. Linda sbasic abstractionisof ashared distributed
tuplespace. The primitive operations provided are add, read and remove atuplefromthe
tuple space. The fourth primitive operation (eval) creates a new process.

These operations can easily be specified in Lygon; witnessprogram 19. Notethat this
iIsageneralisation of the state ADT given in program 8.

5.4. CONCURRENCY 191

Program 19 Linda

in(X,G) « tup(X) ® call(G). Remove atuple

out(X,G) < neg tup(X) e call(G). Add atuple

read(X,G) + tup(X) ® (neg tup(X) *» call(G)). Non-destructively read a tuple
eval (X,G) «+ call(X) 2 call(G).

The Actor model [2] is an abstraction of concurrent processes. An actor is activated
when it recelves a message. It can respond by

- Sending more messages,
- Creating new actors, and

- Changing itslocal state

If we encode an actor as actor(1d,Sate) and a message as mesg(ld,Args) then arule
describing how an actor responds to a message can be written as

actor(ld,State) =» mesg(ld,Args) <
actor(Newld,S) 2 ... ® Create new actors
mesg(Newld,A) 2 ... » Send messages
actor(ld,NewState). Update local state

The example below defines a bank account actor. This actor can respond to three
types of messages:

1. A balance query
2. A request to withdraw funds
3. A deposit request

We also add a shutdown request which terminates the actor.

Note that the actor model has no natural notion of sequentiality — message receipt
IS not guaranteed to be ordered. Thisfitsin with the execution semantics of the Lygon
realisation of the model. The goal go creates an actor with a balance of 0 and sendsit a
request to withdraw $20, a request to deposit $30 and a balance query. The goal has six
solutionswhich correspond to six different message receipt orders. If the deposit request

192 CHAPTER 5. APPLICATIONSOF LYGON

isreceived after thewithdraw request then thewithdraw request failsand thefinal balance
is $30, otherwise the final balanceis $10. The balance query can occur:

1. Before either action (result 0),

2. After both actions (result 10 or 30 depending on the ordering of the other two ac-
tions)

3. Between the actions (result 30 or O depending on the ordering of the other two ac-
tions)

The goal go produces the following outpui:

Bal ance query: O
W t hdraw successful : yes
Fi nal Bal ance: 10

Bal ance query: O
W t hdr aw successful : no
Fi nal Bal ance: 30

Bal ance query: 30
Wt hdraw successful : yes
Fi nal Bal ance: 10

Bal ance query: 10
W t hdraw successful : yes
Fi nal Bal ance: 10

Bal ance query: O
W t hdr aw successful : no
Fi nal Bal ance: 30

Bal ance query: 30
W t hdr aw successful: no
Fi nal Bal ance: 30

Our final example of embedding a concurrent model in Lygon is Petri nets. A Petri
net [120] consists of labelled places (the bigger circles), transitions and tokens (thefilled
black circles).

5.4. CONCURRENCY 193

Program 20 Actors

actor(ld,val) = mesg(ld,balance(Val)) < actor(ld,Vval).

actor(ld,val) » mesg(ld,deposit(X)) < is(NV, Va + X) ® actor(Id,NV).

actor(ld, Va) »» mesg(ld,withdraw(X,yes)) « It(X,Va) @ is(NV,Va-X) ® (ac-
tor(Id,NV)).

actor(ld, Vval) *® mesg(ld,withdraw(X,n0)) < le(X,Va) & actor(ld,val).

To shut down ...

actor(ld, Val) 2 mesg(ld,terminate(Val)) + 1.

Test ...
go « (actor(ac1,0) » mesg(acl,withdraw(20,R)) » mesg(acl,deposit(30)) »
mesg(acl,balance(B)) ' mesg(acl,terminate(X)))
® print('Bal ance query: ') ® print(B) ® nl
® print(W t hdr aw successful : ') ® print(R) @ nl
® printCFi nal Bal ance: ') ® print(X) ® nl ® nl
® fail.

Figure5.5 A Petri Net

(@)1~

()

194 CHAPTER 5. APPLICATIONSOF LYGON

A transition is enabled if all places with incoming arcs have at least one token. An
enabled transition fires by removing a token from each place with an incoming arc and
placing atoken on each place with an outgoing arc. In the Petri net above, the only en-
abled transition is from a to b and it fires by removing the token from a and placing a
token on b.

Davison [36] investigates modelling Petri nets in the guarded Horn clause language
Parlog ([50] and [125, chapter 3]). The Lygon realisation below issimpler and more con-
cise. In Lygon (program 21) the Petri net in figure 5.5 is encoded as:

t(a) « t(b).
t(b) 72 t(d) « t(c).
t(c) « t(b) 7% t(d).

This states that (i) atoken at place a can be transformed to atoken at b, (ii) if there
are tokens at both b and c then they can be replaced with atoken at d, and (iii) atoken at
d can be replaced with two tokens at b and c.

Program 21 uses tick to single step the net —atransition cannot fire unlessit isgiven
atick. The control predicate is quite interesting and demonstrates an application of con-
text copying using &. The predicate takes a single argument — alist, the length of which
determines how many steps are to be taken. The first clause of control terminates the
program (using T) if all transitions have been carried out. The second clause copies the
computation; thefirst copy iscollected and printed, the second is given atick token which
allows asingletransition to take place. This technique allows a concurrent computation
to be controlled and terminated.

The query go generates the following output:

[t(a),t(d)]
[t(b),t(d)]
[t(c)]
[t(b),t(d)]
[t(c)]
[t(b),t(d)]

5.4. CONCURRENCY 195

Program 21 Petri Nets
tick e t(a) « t(b).

tick ’g t(b) 2 t(d) < t(c).
tick e t(c) < t(b) e t(d).

go « control([1,2,3,4,5,6]) s t(a) 2 t(c).

control([]) « T.
control ([A|As]) « (collect(X) @ output(X)) & (tick *» control (As)).

collect([t(X)|R]) 7e t(X) < collect(R).
collect([]) « 1.

We finish this section with a solution to the classical dining philosophers problem.
In this problem there are a number (usually five) of philosophers whose actions are as
follows:

1. Get aroom ticket and then enter the dining room
2. Get the chopstick on one side

3. Get the chopstick on the other side

4. Eat

5. Return the chopsticks and room ticket

6. Return to thinking then repeat from step 1

A solution to the dining philosophers problem isa(concurrent) program which simulates
the actions of the hungry thinkers and implements a strategy which prevents (literal!)
starvation. Starvation can occur, for example, if al the philosophers simultaneously pick
up their right chopsticks and then wait for the left chopstick to become available.

This particular solution is adapted from [28]. For N philosophersthereare N — 1
“room tickets’. Before entering the room each philosopher must take a roomticket from

196 CHAPTER 5. APPLICATIONSOF LYGON

a shelf beside the door. This prevents al of the philosophers from being in the room at
the sametime.

Program 22 combinesanumber of idiomswhich wehave seen. Thefirst clause of phil
uses acontinuation passing styleto sequence operations. The operationsbeing sequenced
involve output (using print). A lock is used to obtain mutual exclusion, this prevents
output from different philosophers from being interleaved.

Program 22 uses a number of linear predicates. rm represents a roomticket, phil (X)
representsthe X th philosopher and ch(X) the X th chopstick. tok isatoken which enables
asingleexecution step to take place. By supplying acertain number of tokenswe prevent
the computation from running indefinitely. Ipr is alock which is used to guarantee that
primitive actions (such as picking up a chopstick or eating) are mutually exclusive.

The main clause defining phil is simply the continuation passing encoding of the se-
quence:

1. Delete atoken
2. Write“1I’m hacking”
3. Delete aroom ticket
4. Write “Entering room”
5. Delete one chopstick
6. Write “ Grabbing chopstick”
7. Delete other chopstick
8. Write “ Grabbing chopstick”
9. Write “Eating”
10. Write“Returning”
11. Addroom ticket and both chopsticks

12. Gotostep 1

5.4. CONCURRENCY 197

It is recommended that this program be run with fair ness (see [146]) turned on. A
typical run produces the following outpuit:

phil (a) hacki ng

phil (a) entering room
phi | (c) hacki ng

phi | (b) hacking

phi | (d) hacki ng

phil (a) grabbing a

phil (c) entering room
phil (a) grabbing b

phil (b) entering room
phil (a) eat

phil (a) returning a and b
phil (c) grabbing c

phil (d) entering room
phil (c) grabbing d

phil (b) grabbing b

phil (c) eat

phil (c) returning ¢ and d
phil (b) grabbing c

phil (b) eat

phil (d) grabbing d

phil (d) grabbing e

phil (b) returning b and c
phil (d) eat

phil (d) returning d and e
no tokens

198 CHAPTER 5. APPLICATIONSOF LYGON

Program 22 Dining Philosophers

go
phil(a) = neg chop(a) » neg room
phil(b) = neg chop(b) "® neg room &
phil(c) & neg chop(c) '® neg room g
phil(d) » neg chop(d) *® neg room
phil(e) »» neg chop(e)
tokens. Added for termination purposes

tokens <— neg tok "% neg tok ’e neg tok & neg tok * neg Ipr.

phil(N) < tok ® hack(N, (room ® enter(N,
(succmod(N,N1) ® chop(N) ® grab(N,N, (chop(N1) ® grab(N,N1, (
eat(N, (return(N,N1, (neg chop(N) "2 neg chop(N1) *® neg room '@

phil(N))MN)).-
phil(N) < !(print(no tokens’)®nl)® T.

succmod(a,b). succmod(b,c).
succmod(c,d). succmod(d,e).
succmod(e,a).

enter(N,C) + lpr@ print(phi | (")®print(N)®print(’) entering room)®nl®
(neg Ipr e call(C)).

eat(N,C) < lpr @ printCphi | (7)) ® print(N) @ print() eat’)®@nl ®
(neg lpr »» call(C)).

hack(N,C) < lpr @ print(phi |l (') ® print(N) ® print(') hacki ng’)® nl ®
(neg lpr 2 call(C)).

grab(N,N1,C) < Ipr ® printCphil (") ® print(N) ® print(") grabbing ') ®
print(N1) ® nl ® (neg Ipr e call(C)).

return(N,N1,C) < lpr @ printCphi | (") @ print(N) @ print(’) returning ') ®
print(N) @ print(and ') ® print(N1) ® nl ® (neg lpr e call(C)).

5.5. ARTIFICIAL INTELLIGENCE 199

5.5 Artificial Intelligence

In this section we are concerned with the knowledge representation aspects of Artificial
Intelligence (Al). One of the many knowledge representation formalisms that has been
commonly used in Al isclassical logic. Classical logic suffers from a number of inade-
quacies— chief among them isthat change cannot be easily modelled. One aspect of this
is the frame problem — how to specify what remains unchanged by an operation. Aswe
shall see linear logic does not suffer from this problem — state change in linear logic is
simple and direct.

We present arange of examplesillustrating the application of linear logic and of Ly-
gon to knowledge representation. It is worth noting that the problems we consider have
solutionsin the classical logic framework. It is aso worth emphasising that these solu-
tions are invariably complex and obtuse.

In[5] Vladimir Alexiev looks at Kowalski’s Event Calculus[90]. Theevent calculus
isaformalisation of eventsand their effect on states. One of the key features of the Event
Calculusisthat it is executable — the theory isrealised as a Prolog program. The Prolog
realisation of the Event Calculus relies heavily on negation as failure. Thisisinelegant
inthat negation asfailureisglobal —it dealswith non-derivability. On the other hand the
notion of changeisintuitively alocal one. Linear logic allows aredlisation of the Event
Calculuswhichispure, direct and implements change asalocal operation. In additionto
being simpler, being able to view change as alocal operation is also considerably more
efficient.

In [145] a more detailed analysis is performed and a Lygon meta-interpreter con-
structed. The same conclusion —that linear logic is a much more natural (and efficient!)
framework for representing change — is reached.

We look at a number of examples:
1. The Yale shooting problem: a prototypical example of the frame problem.
2. Blocksworld: an example planning problem.

3. Default reasoning.

200 CHAPTER 5. APPLICATIONSOF LYGON

The Yale shooting problem [52] is a prototypical example of a problem involving
actions. The main technical challenge in the Yale shooting problem is to model the ap-
propriate changes of state, subject to certain constraints. In particular:

1. Loading a gun changes its state from unloaded to loaded;
2. Shooting agun changes its state from loaded to unloaded;

3. Shooting aloaded gun at aturkey changes the turkey’s state from alive to dead.

To model thisin Lygon, we have predicates alive, dead, loaded, and unloaded, rep-
resenting the given states, and predicates load and shoot, which, when executed, change
the appropriate states. The initia state is to assert alive and unloaded, as initially the
turkey is alive and the gun unloaded. The actions of loading and shooting are governed
by the following rules:

load <— unloaded ® neg loaded.
shoot < alive ® loaded ® (neg dead *» neg unloaded).

Hence given the initial resources alive and unloaded, the goal shoot 2 load will cause
the state to changefirst to alive and loaded, as shoot cannot proceed unlessloaded istrue,
and then shoot changes the state to dead and unloaded, as required.

Expressing this problem in Lygon is simplicity itself (see program 23). It would be
trivial given certain syntactic sugar - see program 28. The query go prints out
[unl oaded, dead] .

An alternative way of presenting the first clause is shoot * (dead ® unloaded) <+
alive’ loaded. Thisis dlightly clearer but isn't valid Lygon.

A (dlightly) less artificial planning problem is the blocks world. The blocks world
consists of a number of blocks sitting either on a table or on other blocks and a robotic
arm capable of picking up and moving a single block at atime. We seek to model the
state of the world and of operations on it. Our presentation is based on [101-103]. This
program was independently written by Alessio Guglielmi [51].

The predicates used to model the world in program 24 are the following:

- empty: therobotic arm is empty;

5.5. ARTIFICIAL INTELLIGENCE 201

Program 23 Yale Shooting Problem

shoot <+ alive ® loaded ® (neg dead 2 neg unloaded).
load < unloaded ® neg loaded.

start < neg alive '» neg unloaded.

go(X) < coallect([],X) * shoot ’e start "z load.
go collects all solutions and displays them.
go < go(X) ® output(X) ® fail.

collect(X,Y) « get(Z) ® collect([Z|X],Y).
collect(X,X).

get(X) < once((alive ® eq(X,aive)) @
(dead ® eq(X,dead)) &
(loaded ® eq(X,loaded)) &
(unloaded ® eq(X,unloaded))).

hold(A): the robotic arm is holding block A;

clear(A): block A does not support another block;

ontable(A): block A is supported by the table;

on(A,B): block A is supported by block B.

There are a number of operations that change the state of the world. We can take a
block. Thistransfers ablock that does not support another block into the robotic arm. It
requires that the arm is empty. We can remove a block from the block beneath it, which
must be done before picking up the bottom block. We can also put a block down on the
table or stack it on another block. Finally, initial describestheinitia state of the blocks.

The predicate showall allows usto collect the state of the blocksinto alist which can
be displayed. The goal initial % go " show returns the solution R = [empty, on(a,b),
clear(a), clear(c), ontable(c), ontable(b)].

The order of the instructionstake, put etc. is not significant: there are actions, speci-
fied by therules, such as put(c), which cannot take place from theinitial state, and others,

202 CHAPTER 5. APPLICATIONSOF LYGON

such as take(b) which can. It isthe problem of the implementation to find an appropriate
order in which to execute the instructions, so giving the final state.

Program 24 Blocks World

take(X) < (empty ® clear(X) @ ontable(X)) ® neg hold(X).

remove(X,Y) < (empty ® clear(X) ® on(X,Y)) ® (neg hold(X) » neg clear(Y)).
put(X) < hold(X) ® (neg empty " neg clear(X) 2 neg ontable(X)).

stack(X,Y) «+ (hold(X) ® clear(Y)) ® (neg empty ’® neg clear(X) @ neg on(X,Y)).

Theinitial state of theworld ...
initial <— neg ontable(a) '@ neg ontable(b) *» neg on(c,a) ® neg clear(b) @ neg clear(c)
2 neg empty.

The actions to be done. ...
go < remove(c,a) » put(c) = take(a) v stack(a,b).

showall([ontable(X)|R]) < ontable(X) @ showall(R).
showall([clear(X)|R]) < clear(X) ® showall(R).
showall([on(X,Y)|R]) «+ on(X,Y) ® showal(R).
showall([hold(X)|R]) «+ hold(X) ® showall(R).
showall([empty|R]) + empty ® showall(R).
showall([]).

show «+ showall(R) ® output(R). output is defined in program 1.

Our final artificial intelligence related example involves non-monotonic reasoning.
A logic is non-monotonic if the addition of a fact can cause old facts to become false.
Classical logic is monotonic and as a result, attempts at capturing non-monotonic rea-
soning in classical logic have been complicated. Girard [48] argues that linear logicisa
good candidate for capturing non-monotonic reasoning.

A common application for non-monotonic reasoning is reasoning about exceptional
situations and taxonomies. For example, as arule, birds fly and chirp. We aso know
that penguins are birds but that they do not fly. We seek to find a representation that al-
lows penguins to inherit the chirping behavior from birds while preventing them from
inheriting the ability to fly.

5.5. ARTIFICIAL INTELLIGENCE 203

In order to use linear logic as the reasoning mechanism we need to represent know!-
edge as linear predicates. So we have the linear facts opus, tweety, bird, penguin, fly and
chirp. Our rules are of theform

class « properties

For example, bird < fly 2 chirp. Using resolution we can derive that a bird can fly and
chirp (using the query (neg fly ® neg chirp) *» bird).

Since we wish to be able to derive that birds can fly (that is, ignore their ability to
chirp whereit is not relevant) we allow the derived attributes to be weakened by writing
bird <— (fly ®_L) *® (chirp®.L).

We can easily state that Opus has the property of penguin-hood (opus < penguin —
note that since Opus only has a single property weakening is not necessary). The inter-
esting part is encoding the knowledge that penguins are non-flying birds. Thisiswhere
we expl oit the non-monotonic properties of linear logic—bird » neg flyisprovable but,
ingeneral, bird e neg fly’e p will not be. Thuswe write penguin < bird ' antifly. The
choice of the formula antifly isimportant. We want flying behavior to be suppressed in
penguins but not chirping behavior. In order to achieve this antifly must be fly specific.
By having antifly consume an instance of fly the correct behavior occurs.

antifly < negfly® L

Girard refers to antifly as a“kamikaze” [48].
Below we have a derivation of Opus’ chirping behavior (on the left) and afailed at-
tempt to prove that he can fly (on the right).

chirp, neg chirp chirp,neg fly
fly,neg fly chirp & L, neg chirp fly,neg fly chirp ® L,neg fly
fly® L,neg fly L,chirp® L1, negchirp fly® L,neg fly L,chirp® 1,neg fly
fly® L, chirp® L,neg fly ® L, neg chirp fly® L,chirp® L,neg fly ® L, neg fly
(fly® L) (chirp® 1),neg fly ® L, neg chirp (fly® L) (chirp® L),neg fly ® L,neg fly
bird,neg fly ® L,neg chirp bird,neg fly ® L,neg fly
bird ® (neg fly ® 1), neg chirp bird e (neg fly ® L1),neg fly
penguin, neg chirp penguin,neg fly

opus, neg chirp opus,neg fly

204 CHAPTER 5. APPLICATIONSOF LYGON

Under program 25 we have that the goal's implies(tweety,chirp), implies(tweety,fly)
and implies(opus,chirp) are derivable but that implies(opus,fly) is not.

Program 25 Exceptional Reasoning
Penguins are birds which don’t fly ...
penguin < bird e (neg fly ® _L).
Birdsfly and chirp ...

bird < (fly & L) @ (chirp & L).
Tweety isa bird

tweety < bird.

Opusisa penguin

Opus «— penguin.

implies(A,B) « call(neg B) s call(A).

5.6. META-PROGRAMMING 205

5.6 Meta-Programming

A meta-interpreter isan interpreter for alanguage L whichisitself writtenin L. For ex-
ample, aLISPinterpreter written in LISP. The usefulness of meta-interpreters as distinct
from any other type of interpreter is that in a dynamic language such as Prolog or LISP
itisgenerally possibleto delegate aspects of the implementation. For example, the stan-
dard Prolog meta-interpreter does not implement unification. This enables aspects of the
implementation that are not interesting to be implemented with a minimum of effort.

Metainterpreters have arange of uses. Oneimportant area of application is prototyp-
ing —the use of meta-interpreters often alows for a quick implementation of alanguage
whichis similar to the base language. This allows experimentation with alanguage im-
plementationwhileitsdesignisstill being developed. A number of languages began their
lives as meta-interpreters including Concurrent Prolog [125, chapter 2], Erlang and of
course, Lygon. A second area of application involves non standard executions. Typical
examplesare collecting statistics, tracing and debugging. Meta-interpretersare also used
in certain areas of Artificial Intelligence.

Meta-interpreters are a part of the Prolog culture [117, 134]. The standard “vanilla”’
Prolog meta-interpreter handles the resolution mechanism and expresses the essence of
Prolog execution in three lines:

prove(true) :- true.
prove((A B)) :- prove(A), prove(B).
prove(A) :- clause(A B), prove(B).

Thestructureof thisprogramistypical of ameta-interpreter for alogic programming lan-
guage. To prove alogical constant we simply check that the constant holds. In classical
logic false will dways fail and true will always succeed. However, in linear logic some
logical constantswill either succeed or fail depending on the context. The Prolog clause

prove(true) :- true.

corresponds to the Lygon clauses:

prove(l) «+ L.
prove(l) « 1.

206 CHAPTER 5. APPLICATIONSOF LYGON

prove(T) <+ T.

To prove aformulawhich consists of a connective with some sub-formul ae we prove
the sub-formul ae and join the proofs with the appropriate connectives. The Prolog clause

prove((A B)) :- prove(A), prove(B).
corresponds to the Lygon clauses:

prove(A ® B) « prove(A) ® prove(B).
prove(A & B) < prove(A) & prove(B).
prove(A 2 B) < prove(A) e prove(B).
prove(A & B) < prove(A) @ prove(B).
prove(exists(X,A)) + exists(X,prove(A)).
prove(! A) < ! prove(A).

The final Prolog clause handles atomic goals by resolving against a program clause.
The Lygon equivalent isalittle more complex since Lygon program clauses have aricher
structure (see program 26).

There are anumber of aspects of aLygon meta-interpreter which do not arise in Pro-
log meta-interpreters:

1. The representation of the context,
2. Resolving against clauses, and
3. Selecting the formulato be reduced.

Note that the last of these is specific to Lygon and does not appear in the Lolli meta-
interpreter [30].

We choose to represent a linear formula F' as lin(F) and a non-linear formula ?F" as
? nonlin(F). This allows us to distinguish between linear and non-linear formula and
means that, for instance, the connective ! works as is, since the representation of linear
and non-linear formulae are linear and non-linear formulae respectively.

Resolutionisslightly more complex than isthe casefor Prolog but the principleisstill
straightforward. An atomic goal (atom(A)) is provable if either (i) the context contains

5.6. META-PROGRAMMING 207

the linear negation (lin(neg A)), (ii) Aisabuiltin predicate, or (iii) the program contains
aclause R and resolving eliminates A.
Thefirst and second cases are both handled easily by asingle clause each. The third

case uses the auxiliary predicate doleft which implements the relevant left rules.
The following derivation illustrates the use of doleft:

prove(atom(append([1],[2],An))) ® print(An)

— nonlin(R) ® doleft(R,atom(append([1],[2],An))) ® print(An)

R = (atom(append([X|Y],Z,[X|Q])) + atom(append(Y,Z,Q)))

— doleft((atom(append([X|Y],Z,[X|Q])) < atom(append(Y,Z,Q))) , atom(append([1],[2] An)))
® print(An)

X=1,Y=[],Z2=[2],An=[1]Q]

— prove(atom(append([],[2],Q))) ® print([1|Q])

— nonlin(R) ® doleft(R,atom(append([],[2],Q)))® print([1|Q])

R = atom(append([],X,X))

— doleft(atom(append([].X,X)) , atom(append([],[2],Q))) ® print([1|Q])

X=[2],Q=[2]

— print([1,2])

One operation that is specific to Lygon is selecting a formula to be reduced. Aswe
have seen there are a number of heuristics which can be applied to reduce the amount
of nondeterminism. Our first meta-interpreter (program 26) side-steps the issue by dele-
gating formula sel ection to the underlying Lygon implementation. For example, the goal
prove((A ® B) » (C & D)) isreduced to prove(A) ® prove(B) , prove(C) & prove(D) at
which point the Lygon system will select the second formulafor reduction and commit
to this selection.

The second meta-interpreter (program 27) illustrates how selecting the formulato be
reduced can be done by the meta-interpreter. We select a formula by looking at what
classes of formulae are present. If there are any “async” formulae then we can select an
arbitrary “async” formulaand commit toit. If all formulaeare” sync” then we must select
aformula non-deterministically. Note that most of the clauses defining binary connec-
tives are modified to use select. By writing prove(A e B) < neg lin(A) 2 neg lin(B)
s select rather than prove(A 2 B) + prove(A) e prove(B) we ensure that sub-formulae
can only run when they have been selected.

The select operation copies the linear context (using &). The copy is consumed and

208 CHAPTER 5. APPLICATIONSOF LYGON

anoteis made of which classes of formulae are present. The predicate get then selectsa
formulafrom the appropriate class. Thisformulais then passed to prove.

For example, the goal® prove((p ¢ q) ® (neg p & neg q)) reduces to the goal
neg lin(p@® q), neg linlneg p & neg q), select. The linear context is copied and
type(sync,T) iscalled. Thisgoa consumesthe two lin facts and determines that the first
issynchronous and the second asynchronous. The goal returnstheresult T = async since
asynchronous goal s take precedence over synchronous goals.

The predicate get(async,A) isthen called. Thisselectsan arbitrary asynchronous goal
formula and commitsto the selection. Theresult (A= neg p & neg Q) isthen passed to
prove.

One of the applications of meta-interpretersis to enable easy experimentation with
language variants and extensions. One language extension to Lygon which has been pro-
posed [154] isrules. A rule of theform rule(N,Is = Os) isread as stating that in order to
prove N we must consume |s and produce Os. Alternatively, the rule rewrites the mul-
tiset containing N and Is to the multiset containing Os. The atom N is distinguished in
that it triggers the rule application. As program 28 demonstrates, extending the Lygon
meta-interpreter with rulesis quite simple.

We have the following derivation:

init , shoot , load

— unloaded, alive, shoot, load Using the rule for init
— loaded, alive, shoot Using the rule for load

— unloaded, dead Using the rule for shoot

®Note that the notation here omits occurrences of atom(. ..) to increase readability.

5.6. META-PROGRAMMING 209

Program 26 Lygon Meta Interpreter |

prove(A ® B) « prove(A) ® prove(B).
prove(A 7 B) « prove(A) s prove(B).
prove(A @ B) « prove(A) ¢ prove(B).
prove(A & B) < prove(A) & prove(B).
prove(l) «+ L.

prove(l) «+ 1.

prove(T) « T.

prove(exists(X,B)) < exists(X,prove(B)).
prove(?(neg(F))) < ? neg nonlin(F).
prove(!(F)) < ! prove(F).

prove(once(F)) + once(prove(F)).
prove(atom(A)) + nonlin(R) ® doleft(R,A). Resolve against a clause.
prove(atom(A)) < lin(neg(A)).
prove(atom(A)) < builtin(A) ® call(A).
prove(neg(A)) < neg lin(neg(A)).

doleft(atom(A),A).
doleft(forall(X,B),A) + exists(X,doleft(B,A)).
doleft((atom(A) < G),A) < prove(G).
A simple Read-Eval-Print loop. Use EOF to exit.
shell + repeat ® print(Met al ') ® readgoal (X) ® print(X) ®
once(
(eq(X,atom(end_of file)) @ nl)
@ (prove(X) ® output(yes))
@ output(no))
® eq(X,atom(end_of file)).

The program clauses usable from the meta-shell:
(Note that for now we need to manually add the at omwrapper)

nonlin(atom(eg(X,X))).
nonlin(atom(append([],X,X))).
nonlin((atom(append([X|Y],Z,[X|Q])) < atom(append(Y.Z,Q)))).

210 CHAPTER 5. APPLICATIONSOF LYGON

Program 27 Lygon Meta Interpreter |1

prove(A ® B) < prove(A) ® prove(B).

prove(A 2 B) <+ neg lin(A) 2 neg lin(B) = select.
prove(A @ B) < (neg lin(A) @ neg lin(B)) = select.
prove(A & B) < (neg lin(A) & neg lin(B)) = select.
prove(l) «+ L. prove(l) «+ 1. prove(T) « T.
prove(exists(X,B)) « exists(X,neg lin(B)) = select.
prove(?(neg(F))) < ? neg nonlin(F).

prove(!(F)) < ! prove(F).

prove(once(F)) + once(prove(F)).

prove(atom(A)) < nonlin(R) ® doleft(R,A).
prove(atom(A)) <+ lin(neg(A)).

prove(atom(A)) < builtin(A) ® call(A).
prove(neg(A)) «+ neg lin(neg(A)).

doleft(atom(A),A).
doleft(forall(X,B),A) + exists(X,doleft(B,A)).
doleft((atom(A) < G),A) <+ neg lin(G) = select.

select < type(T) & (get(T,A) @ prove(A)).
type(T) « type(sync,T).

type(C,T) < once(lin(A)) ® atomtype(A,D) ® lub(C,D,E) ® type(E,T).
type(T,T).

get(async,A) < once(lin(A) ® atomtype(A ,async)).
get(sync,A) < lin(A) ® atomtype(A,sync).

atomtype(®(-,-),sync). atomtype(a(_,-),sync).
atomtype(exists(_,_),sync). atomtype(1,sync).
atomtype(!(L),sync). atomtype(once(_),sync).
atomtype(atom(_),sync). atomtype(neg(_),sync).
atomtype(’2(_,-),async). atomtype(&(-,-),async).
atomtype(T ,async). atomtype(_L ,async).

atomtype("(_),async).
lub(sync,X,X). lub(async,async,async). lub(async,sync,async).

shell < repeat ® print('Met a2 ') ® readgoal(X) ®
once(
(eq(X,atom(end_of file)) @ nl) & (prove(X) ® output(yes)) ¢ output(no))
® eq(X,aom(end_of file)).

5.6. META-PROGRAMMING 211

Program 28 Adding Rulesto the Meta Interpreter

prove(atom(A)) «+ rule(A,In = Out) ® dorule(In,Out).

dorule([],[A,B|AS]) «+ (neg lin(neg(A))) = dorule([],[B|AS]).

dorule([],[A]) < (neg lin(neg(A))).
dorule([A|AS],X) « lin(neg(A)) ® dorule(As,X).

W\e encode the Yale shooting problem (see program 23) using the rules:
rule(shoot, [alive,loaded] = [dead,unloaded)]).

rule(load, [unloaded] = [loaded]).
rule(init, [] = [unloaded, alive]).

212 CHAPTER 5. APPLICATIONSOF LYGON

5.7 Other Programs

This section contains anumber of other examplesthat did not fit into a previous category.
These programs have potential for future work on programming idiomsin Lygon.

An exception is a programming language construct used to handle error situations
without having error handling code sprinkled throughout the program. Exceptions are
used in arange of languages including SML, Ada, Javaand SO Prolog. Exceptionsare
mani pul ated using the two primitives catch and throw. The catch construct refersto two
blocks of code. The first is executed. If an exception is thrown (using “throw”) within
thisblock (and is not caught by an enclosed catch block) then execution continuesin the
second block (which isindicated by the keyword “handl€’ in the following code). If no
exception is generated then the second block isignored. For example, in the following
code, Hel | o isprinted and an exception isthrown. The exception is caught by theinner
catch and Wor | d is printed. Since the exception was caught, it is not propagated to the
outer catch and its second block isignored.

catch anExceptionin
catch anException in
print(Hel | 0);
throw anException;
print(Ther e);
and handle it by doing
print(Wor | d);
end
and handleit by doing
print(Except i on Rai sed);
print(Abor t i ng);
end

Program 29 describes a form of exception handling in Lygon. The method relies on
the use of T to consume and thus abort the rest of the computation.

The first clause states that if the goal raise(Y) is ever present then we can use the
axiom rule, unifying X and Y and then pass the rest of the linear environment (including

5.7. OTHER PROGRAMS 213

the rest of the computation) to T for consumption. The ! around the handler forces the
computation to be consumed by the T. In the case that no exceptionisraised we need to
allow catch to be ignored which is done by the second clause.

The goal gol has asingle solution which printshandl e: 3. The goa go2 hasa
singlesolution which printsResul t: 3.

Program 29 Exceptions
catch g raise(X) < T ® (thandler(X)).
catch «+ 1.

handler(X) «+ !(print(handl e: ') ® output(X)).
result(X) < !(print(Resul t:) ® output(X)).

gol < catch - computel.
go2 <— catch e compute2.

computel < is(X,1+2) @ (raise(X) & result(X)).
compute2 +— is(X,1+2) ® result(X).

We move now to an application of Lygonto parsing. In[35] constraint multiset gram-
mars are used to parse visual programming languages. Since the linear context isjust a
multiset thisfitsin quite nicely with Lygon and suggests that a Lygon implementation of
aparser for constraint multiset grammars ought to be straightforward.

The idea behind multiset grammars is that basic pictoria elements such as circles,
linesand text areterminalsin amultiset. Grammar rules operate on multisets of symbols
rather than on sequences of symbols. This makes sense since a picture does not have the
natural notion of a sequence of symbolsthat is present in a string.

For examplegiventhemultiset { dot(p(30,70)), line(p(10,20), p(30,70)), text(p(10,20),
" Some Text”) } the following rule, which states that an arrow isaline which ends at the
position of adot arrow(SE) « ling(SE) ® dot(P) ® close(P,E) can be used to yield the
multiset { text(p(10,20),” Some Text”), arrow(p(10,20),p(30,70)) } containing a termi-
nal and a nonterminal. The predicate close takes two locations (of the form p(x,y) and
succeeds if they are within e of each other.

The example below parses finite state machines. The grammar contains four termi-

214 CHAPTER 5. APPLICATIONSOF LYGON

nals symbols:

1. dot(Posn) which indicates the pointing end of an arrow.
2. ling(Sart,End,Middle)
3. text(Posn, Text)

4. circle(Posn,Radius)

Figure 5.6 Finite State Machine

a

Figure 5.6 can be represented as

figure +

neg circle(p(20,10),10) 2 neg circle(p(50,40),10) % neg circle(p(90,10),10) 2
neg circle(p(90,10),7) 2 neg ling(p(10,0),p(10,10),p(10,5)) ®

neg line(p(20,20),p(40,40),p(30,30)) 2 neg line(p(70,10),p(30,10),p(50,10)) 72
neg line(p(60,40),p(90,30),p(75,30)) » neg dot(p(10,10)) 2
neg dot(p(70,10)) > neg dot(p(40,40)) > neg dot(p(90,30))
neg text(p(20,10),1) neg text(p(90,10),2) » neg text(p(50,40),3) »
neg text(p(30,30),b) '® neg text(p(50,10),a) © neg text(p(75,30),c).

The grammar al so defines anumber of non-terminals which we represent using rules
which consume the required terminals.

e Anarrowisformed from aline and adot at the arrow’s end. Arrows have a start,
an end and a middle— arrow(Start,End,Middle).

e Anarcisalabdled arrow. It has a start, an end, a middle and some text
arc(Sart,End,Middle, Text).

5.7. OTHER PROGRAMS 215

e A startarcisan arrow which does not have an attached label. It indicatestheinitial
state and has only an end.

e Therearethreetypesof states, all have amiddle, aradius, alabel and atag identi-
fying their type — state(Middle,Radius,Label, Type). All include acircle and some
text.

— A final state consists of two nested circles and alabel.
— A start state isa state which is the target of a startarc.

— A state which is not one of the aboveis normal.

e A trang(ition) is an arc between two states. The rule given in [35] is awkward in
Lygon since it makes use of non-consuming sub-derivations. The basic problem
is that a transition needs to be able to reference its source and destination states,
however there can be more than one transition to or from a given state. We solve
this problem by parsing in two stages—in the first stage the states are derived and
anote of the states derived is made in the non-linear predicates statem. In the sec-
ond phase the transitions between the states are parsed. The predicate statem im-
plements aform of memoing.

The program operates by starting off with a multiset containing terminal atoms. It
then applies rules which combine these primitive picture elementsinto higher level ele-
ments such as arcs and transitions.

Notetheuse of negation asfailure. Thenot predicateisdefined inthe Lygon standard
library (program 1). The semanticsof negation asfailure mirrors Prolog—thegoal not(G)
succeedsif call(G) failsand failsif call(G) succeeds.

The goal figure e go(X,Y) has the single solution
X = [state(p(50,40),10,3,normal), state(p(20,10),10,1,start), state(p(90,10),20,2,final)]
Y = [trans(3,2,¢), trans(1,3,b), trans(1,2,a)].

Another Lygon application is the Hamming sequence. This program illustrates how
lazy streams can be represented in Lygon. The Hamming sequence consists of numbers
of the form 2¢375* in ascending order. A simple agorithm for generating these numbers
uses streams (seefigure 5.7). We seed the input with 1. We can generate further numbers

216 CHAPTER 5. APPLICATIONSOF LYGON

Program 30 Parsing Visual Grammars

arrow(S,E,M) « (lineg(S,E,M) & ling(E,SM)) ® dot(P) @ close(P,E).
arc(S,E,M,T) < arrow(SE,M) ® text(P,T) ® close(P,M).

startarc(P) <— arrow(S,P,M) ® not(text(M1,.) ® closs(M1,M)).

state(M,R1,N,final) < circle(M1,R1) ® circle(M2,R2) ®
close(M1,M2) ® I1t(R2,R1) ® text(M,N) ® close(M,M1).

state(M,R,N,start) < startarc(E) ® circle(M,R) ® oncircle(E,M,R) ®
text(P,N) ® close(P,M) ® not(circle(M,.)).

state(M,R,N,normal) «+— circle(M,R) ® text(P,N) ® close(P,M) ®
not(circle(M,_)) ® not(startarc(P2) ® oncircle(P2,M,R)).

trans(SE,L) «+ arc(SaEaMal) ®
((statem(M1,RLS,) ® T) &
(statem(M2,R2,E,.) ® not(eqg(M1,M2)) ® T) &
(oncircle(Sa,M1,R1) ® oncircle(Ea,M2,R2) @ T)).

states([]) « not(state(_,_,_,).
states([state(A,B,C,D)|X]) + once(state(A,B,C,D)) ® states(X).

transitions([]) < not(trans(_,-,-)).
transitions([trans(A,B,C)|X]) + once(trans(A,B,C)) ® transitions(X).

go(States, Transitions)
go(X,Y) « states(X) ® (put(X) re transitions(Y)).

put([]) « L.
put([state(A,B,C,D)|Xsg]) + (? neg statem(A,B,C,D)) *® put(Xs).

oncircle(P1,P2,R) + distance(P1,P2,R1) ® closev(R,R1).

close(A,B) «+ distance(A,B,X) ® eps(Epsilon) ® It(X,Epsilon).

closev(A,B) <+ is(D,A-B) @ sgr(D,E) ® eps(Eps) ® It(E,Eps).

eps(1.0).

distance(p(X1,Y1),p(X2,Y2),R) < is(Dx,X1-X2) ® is(Dy,Y1-Y2) ®
sgr(Dx,Dxs) ® sgr(Dy,Dys) ® is(S,Dxst+Dys) ® sgrt(S,R).

sort(X,Y) « is(Y,pow(X,0.5)).

sar(X,Y) < is(Y,pow(X,2.0)).

5.7. OTHER PROGRAMS 217

in the sequence by multiplying existing numbersby 2, 3 or 5. Each number generated is
both output and fed back into the process to get further numbers.

In program 31 we represent a stream as a collection of linear facts. The times predi-
cate multipliesitsarguments. If theresult isgreater than thelimit thenitisignored other-
wiseit iscycled back intoin and copied to show. Once the sequence has been generated
up to agiven limit we collect and display the results. The query go(30) prints
[2,3,4,5,6,8,9, 10, 12, 15, 16, 18, 20, 24, 25, 27]

Figure 5.7 Diagram of Hamming Processes
X 2
in——e—| X3 show
X5

Our final example involves bottom up computation. Logic programming languages
such as Prolog and Lygon are top down — given aclause such asp <+ ¢ A r and aquery
p they attempt to show that p holds by showing that ¢ A r holds.

The complementary approach — used in deductive databases—is bottomup. Here we
begin with the knowledge that ¢ and » hold and we then conclude from the rule that p
must hold. Since bottom up computation is not goal directed, generalising it to linear
logic is an open area of research [61].

Program 32 illustrates how we can emulate simple bottom up processing in Lygon.
We have a collection of facts which are known to hold and we apply rules “ backwards”
to derive new facts. To avoid inefficiency we tag each fact with its“ generation number”
—initial facts are tagged with 0 and a fact derived from facts tagged » and m is tagged
with max(m, n) + 1.

The predicate do has an argument which indicates the current generation being pro-
cessed. To avoid re-generating facts, one of the facts being used must be from this gen-
eration. For example, if we are processing generation 2 then we can use afact from gen-
eration 2 and one from generation 1 to generate a new fact which will be of generation
3.

218 CHAPTER 5. APPLICATIONSOF LYGON

Program 31 Hamming Sequence Generator
go(Lim) < go(Lim,X) ® nodupsort(X,X2) ® output(X2).
go(Lim,L) < in(1,Lim) *@ collect(L).

in(X,Lim) « times(2,X,Lim) » times(3,X,Lim) = times(5,X,Lim).

times(X,Y,Lim) < is(Z, X * Y) ®
((It(Z,Lim) ® (in(Z,Lim) "2 neg show(Z))) &
(ge(Z,Lim) @ 1)).

Collectsall showsintolist ...
collect([Z|X]) + once(show(Z)) ® collect(X).
collect([]).

nodupsort([],[])-
nodupsort([X],[X]).
nodupsort([X,Y |Xs],R) < have([X,Y|Xs],A,B)
® nodupsort(A,R1) ® nodupsort(B,R2) ® merge(R1,R2,R).

merge([],X,X).

merge([X|Xs],[],[X|Xs]).

merge([X|Xs],[Y|YS],[X|R]) «+ It(X,Y) ® merge(Xs[Y|Y9],R).
merge([X|Xs],[Y|YS],[Y|R]) «+ gt(X,Y) @ merge([X|Xg],YsR).
merge([X|Xs],[Y]Y9],R) < eq(X,Y) ® merge([X|Xs],YSR).

The particular application is path finding. The predicate canadd finds an edge in the
current generation and another edge and checks that the new composite edge derived is
not present in a previous generation. Note the use of & to avoid consuming the edges
being checked.

The clausesfor do simply find anew edge using canadd and add it. If no more edges
can be added in the current generation then the generation is incremented and checkdo
iscalled. The predicate checkdo calls do if edges were added to the previous generation
and terminates otherwise.

Consider running the goal go(X). The graph described isthat of figure 5.2. Inthefirst
generation we add composite edgesfromatoc,btod,ctoe ctoaanddtob.

5.7. OTHER PROGRAMS 219

The second generation adds composite edgesfromatod, btoa, btoc, ctoband d
to cusing aninitial edge and afirst generation edge and adds composite edges from a to
e atoa, btob, ctocanddtodusing pairsof first generation edges. No more composite
edges can be derived and so the goal returns the answer:

X = [e&(d,e)0), &d,a,0), &c,d,0), eb,c,0), e(ab,0), e(a,c,l), eb,d,1), ec,al), ec,el),
e(d,b,1), &(d,d,2), &(d,c,2), &(c,c,2), e(c,b,2), &b,b,2), g(b,a,2), e(b,e,2), &a,e,2), &a,a,2),
ea,d,2)]

Program 32 Bottom Up Computation
go(X) < graph 2 neg result(X) 2 do(0).

graph <
neg edge(a,b,0) 2 neg edge(b,c,0) » neg edge(c,d,0) » neg edge(d,a,0) = neg edge(d,e,0).

canadd(N,A,C,NR) < (edge(A,B,N) ® edge(B,C,N1) ® [e(N1LN) ® iS(NR,N+1) ® T) &
(not(edge(A,C,) ® T) ® T).

do(N) + canadd(N,A,B,NR) & (neg edge(A,B,NR) "z do(N)).
do(N) + not(canadd(_,-,-)) ® is(N1,N+1) ® checkdo(N1).

checkdo(N) «+ edge(A,B,N) ® (neg edge(A,B,N) 2 do(N)).
checkdo(N) «+— not(edge(A,B,N)) ® collect([]).

collect(X) +— once(edge(A,B,N)) @ collect([e(A,B,N)|X]).
collect(X) < result(X).

220 CHAPTER 5. APPLICATIONSOF LYGON

5.8 Discussion

In this chapter we have presented arange of applications of Lygon. Theseillustrate that
the linear logic aspects of the language do indeed gain significant additional expressive-
ness. Many of the programs could also be written in another linear logic programming
language (see section 6.1). However only Lygon and Forum are capable of expressing
all of the examples presented.

In the process of developing the programs we have noted a number of idioms that
occur frequently in Lygon programs. These programming patterns form the beginnings
of aprogramming methodology for linear logic programming languages. An exampleis
the use of T to simulate an affine mode where certain resources can be ignored but not
duplicated.

A number of the common programming idioms have a clumsy syntax; perhaps the
most glaring example is the use of a continuation passing style to enforce a certain se-
quence of operations. One area for further work is the use of syntactic sugar to make
common idioms less syntactically clumsy. Rules (see program 28 and [154]) are an ex-
ample of syntactic sugar.

Another area for further work concerns type systems. Type systems for logic pro-
gramming languages [121] describe the usage of terms. In linear logic programming
languages it makes sense to also consider a form of typing which operates at the level
of predicates. That is, rather than describe the possible structure of the argumentsto a
predicate, the type system would describe the possible effects of the predicate onthelin-
ear context. If, for example, we know which linear predicates are added and removed by
each predicate then it is possible to detect at compiletimethat agoal can not consume a
certain linear predicate. This notion of predicate-level typing is similar to the results of
the analysis presented in [12] and to the type system of [87].

221

Chapter 6
Comparison to Other Work

Inthischapter we survey and comparethevariety of logic programming languageswhich
are based on linear logic. We also briefly relate our work to other uses being made of
linear logic in the programming language research community. In particular, we look at
functional programming languages based on linear language and at uniqueness types.

Unigueness types apply the concept of linearity to values in a (usually declarative)
programming language. Uniquenesstypesexistin Clean[19-21, 130], Mercury [64, 132,
133] and in aversion of Lisp developed by Henry Baker [13-16].

Unigueness types are inspired by linear logic but in general they make use of avery
limited subset of thelogic. Thetwo main uses of uniquenesstypesareto guaranteesingle
threading of sideeffecting 1/0 operationsand to ensure singlethreading of datastructures
— inparticular arrays— to ensurethat in place updating can be done safely. Thissecond
application can be seen as a garbage collection issue [33, 143].

A related application of linear logic isits use to derive functional programming lan-
guages. This is done using the Curry-Howard isomorphism which states that there is
an equival ence between theorems and types in the A\-calculus. This has been applied by
Mackie [98,99], Abramsky [1], Lafont [91, 92] and Lafont and Girard [49] to derive a
linear version of the A-calculus. Theresulting languages are rather different to logic pro-
gramming languages. Formally, the execution model in functional programmingisbased
on thereduction of proofsthrough cut elimination whereasin logic programming the ex-
ecution model is based on proof search. More intuitively, in afunctiona programming

222 CHAPTER 6. COMPARISON TO OTHER WORK

language based on linear logic, linearity is applied to values - linearity thus limits what
the programmer can write. In alogic programming language based on linear logic lin-
earity is applied to predicates and gives the programmer more ways of doing things.

The application of linear logic to valuesis orthogonal to its application to predicates
—itisquite possibleto visualise avariant of, say, Lygon which restricts values to being
used linearly and thus avoids the need for a garbage collector.

6.1 Linear Logic Programming L anguages

In recent yearsanumber of logic programming languages based on linear logic have been
proposed. These tend to fall into two classes based on how they use linear logic:

1. Languages which extend Prolog with linear logic features, and
2. Concurrent languages.

Some languages — for instance Lygon and Forum — both extend Prolog and use linear
logic to add concurrency. In general, the concurrent languages tend to have ad hoc de-
signsand alow afairly limited class of formulae. Languagesin thisclassare LO, ACL
and LC.

Thefirst class of languages tend to have been designed using a proof theoretical anal-
ysis. These languages generally allow arich class of linear logic formulae to be used.
Languages which fall into this group are Lolli, Lygon, and Forum.

Aswe shall see, Lygon, isasuperset of most other linear logic based |ogic program-
ming languages. The exception is Forum which seemsto be roughly equivalent to Lygon
(asproposed in [122]) and as aresult is harder to implement than Lygon, .

A survey of thelanguages can befound in [110]. The syntax of the variouslanguages
are summarised in figure 6.1. Note when comparing Lygon, to Forum and Lolli that the
Lygon, set of program clauses is the normal form of the larger set:

D :=!D, | D

D, = A| D, 9D, | D, &Dy | VD, | G — D,

6.1. LINEAR LOGIC PROGRAMMING LANGUAGES 223

Dy:=T|A|Dy9D; | D &D,|VxD, | G — D,

The same normal form can also be applied to Forum and Lolli.

LO and LinLog

LO (Linear Objects) [8-10] is one of the earlier languages proposed. The motivation
behind its design isto take the object oriented programming paradigm as realised in first
generation concurrent logic programming languages (see section 6.2) and realiseitin a
concurrent language based on linear logic. LO’s design extends the ideas of committed
clause logic programming languages with multi-headed clauses (i.e., clauses of the form
(G — (A179...72A,,))). However theclassof goal formulae permittedisfairly limited.
L O has been implemented but the implementation is not publicly available.

A novel mechanism introduced in the language is a broadcast marker. Some of the
formulae in the head of a clause can be marked for broadcast. These formulae are not
removed from the relevant context but added to theinitial context. Theinitial query is
seen as containing an unknown region which is determined as broadcasts are processed.

More recent work with LO involves optimising communication by abstract interpre-
tation [11, 12] and the use of the language as a co-ordination language[29]. In[42] LOis
used to co-ordinate adistributed diary system whose componentswere written in Prolog.

With the exception of the broadcast mechanism the language is a subset of a number
of other languages including ACL, Forum and Lygon.

A related languageto LO is LinLog. LinLog has not, to the best of my knowledge,
been implemented. It is similar to Forum in that it is“complete for the whole of linear
logic”. In other words, there exists atrang ation algorithm which can encode an arbitrary
linear logic proof into a proof that consists of LinLog goals and programs.

An interesting property of LinLog is that selecting a goal formula needs to be done
using “don’t know” nondeterminism but once a goal formulais selected it can be com-
pletely reduced to atoms before another goal needs to be considered. This property is
achieved by requiring LinLog goalsto consist of synchronous connectives outside asyn-
chronous connectives. For example, the formulap ® (¢ ® r) isnot avalid LinLog goal
since the " (asynchronous) occurs outside of a synchronous connective (®).

224 CHAPTER 6. COMPARISON TO OTHER WORK

Figure 6.1 Linear Logic Based Logic Programming Languages

LO [10]:

D:u=WE(G —oA179...% Ay) Gu=A|T|G&G |GG

LinLog [6]:
Du=WVi(G—-A179...% Ay)

Gu=H|M|1|G®G|0|GDG|T2G
Heum APPA|L | HeH|T|HaH|VeH

ACL [85]:
D :=WVz(G — Ap)
Gu=L|T|An|?Am | 4,169G|G&G|VzG | R
Ru=3T(An®...0 AL ®G) | ROR
LC [140]:

Du=WNI(G—-A179...%A,) Gu=A|lo L|T|G®G|GDG|T2G
Lolli [70]:
Du=T|A|D&D|G—-D|G=D|Vz.D
Gu=T|A|G&G|D—-G|D=G|V2.G |GG |1]|G®G|'G|IzG

Forum [106]:

D:u=¢g Gu=A|G%G|G&G|G—-G|G=G|T|L|VzG

Lygon,, (Section 3.11)
Du= (C1 &...&Ch) | 1IC

Cu=VI(G— (A1®...0 Ay))
Gu=A|1|L|T|G®G|GDG|G%G|G&G|D—G|D"|VsG |32 |IG |?G

6.1. LINEAR LOGIC PROGRAMMING LANGUAGES 225

Theclass of formulae allowed in LinLog isasubset of the Lygon, class of formulae.

Since there exists an agorithm [6] which can trandlate an arbitrary proof in linear
logic to one in the LinLog fragment, it follows that any proof in linear logic can be car-
ried out within Lygon, via a syntactic translation. This result is not actually of much
practical use —although a proof will exist in the Lygon, fragment of linear logic we can
not necessarily expect the Lygon system to be ableto find it efficiently.

ACL

ACL [85, 88] (A Concurrent Language) useslinear logic asthe basisfor aconcurrent pro-
gramming languages. The actual language' [128] isan ML-like functional programming
language with concurrency primitivesinspired by linear logic's connectives.

Some early work with ACL looked at process equivalencerelations[86]. Morerecent
work centers around the development of language tools such partial evaluators[73] and
abstract interpreters [84].

ACL hasal so been used asan implementation languagefor aconcurrent object-oriented
programming language and in this context there has been work on providing atype sys-
tem for the language which is capable of detecting “message not understood” errors at
compiletime[87].

Like LO, ACL sacrifices completeness by implementing “don’t care” nondetermin-
ism. The class of formulae used in ACL is a subset of the Lygon, class of formulae.

LC

LC (Linear Chemistry) [140] isaminimal concurrent language fairly similar in capabili-
tiesto ACL. Itisinteresting for anumber of reasons. Firstly, it was systematically derived
using a generalisation of uniformity. Secondly, it makes use of the formulal ® | asa
primitive which terminates a single process — if there are other processes then the pro-
cess quietly vanishes (using 1) otherwise the proof is successful (using 1). Finaly, an
interesting property of the language is that all proofsin the £C fragment of linear logic
are actually sticks rather than trees — each inference rule has at most one premise.

'Availablefromcani | | e.is.s. u-tokyo. ac. j p: pub/ hacl .

226 CHAPTER 6. COMPARISON TO OTHER WORK

LC has, to the best of my knowledge, not been implemented. The class of formulae
alowed in LC is asubset of the Lygon, class. Since £C (like ACL and LO) sacrifices
completeness by implementing “don’t care” nondeterminism, it is incapable of express-
ing programs involving backtracking such as the graph search programs of section 5.3.

Lolli

Lolli 66,69, 70] (named for the lollipop connective of linear logic (—)) was the first
linear logic based logic programming language to be designed using uniformity. Apart
from being based on intuitionistic linear logic and thus not allowing *e (which is needed
for the concurrent applications of linear logic) Lolli isarich language, particularly inits
class of program formulae. The Lolli implementation [68] is available from its World
Wide Web page [67]. Notethat F' = G isdefined as (! F') — G, thisisalso the case for
Forum.

The language has been used for a number of example programs [66] which demon-
strate basi ¢ techniques of linear logic programming (for example, permutations, toggling
etc.). It has also been used to specify filler-gap dependency parsers [65]. Lolli has been
used to implement event cal culus programs by a number of researchers [5, 31].

Lolli and Lygon are fairly similar in methodology. Roughly speaking, Lolli can be
seen as Lygon minus concurrency. Indeed, the class of formulae usable in Lygon, isa
superset of the Lolli class.

Forum

In some aspects Forum [106, 109] isfairly similar to Lygon. The main difference isthat
Forum satisfies avariant of asynchronous uniformity which does not require that atomic
goals guide the proof search process. Forumincludes | in programs and in clause heads
and as aresult it ismore of a specification language than alogic programming language.
Both of Forum’s designers have commented [71, 111] that Forum does not appear to be
alogic programming language. Two of the reasons why Forum is too expressive to be
considered alogic programming language involve higher order quantification. Thethird
IS the presence of program clauses of theform G — L. Such clauses can be resolved

6.2. CONCURRENT PROGRAMMING 227

against at any time regardless of the goal.

Forum has anaive implementation in A-Prolog and an SML implementation (similar
in styleto Lolli’simplementation) which is available from
ftp://ftp.cs. hnt. edu/ pub/ hodas/ Forum forum tar. Z

Work on Forum has mostly concentrated on its use as a specification language. It has
been applied to the specification of an ML-like language, a simple RISC processor [34]
logical inference systemsin both natural deduction and sequent calculus styles[106] and
transition systems [104].

There is also a group at Universitadi Genova working on object oriented program-
ming in alinear logic framework which use Forum [38].

The class of program formulae permitted by Lygon, is precisely a normalised form
[106] of the Forum class of program formulaeexcluding L headed clauses. Forum'’sclass
of goal formulae is limited to asynchronous formulae. Although an attempt is made in
[106, 109] to add synchronous connectives (such as 3) using logical equivalencesthesyn-
chronous connectives are not first class citizens — for example there exists a program P
and formula F' such that P + 3z F is provable but where there isn't aterm ¢ such that
P+ F[t/x] isprovable. Lygon, , onthe other hand, fully supports synchronous connec-
tivesin goals asfirst class citizens. Note that the optimisations presented in section 4.4
alow Lygon, programswhich only use the Forum subset of goal formulae to execute as
efficiently as Forum. Thus, with the exception of (i) higher orderness (which is orthogo-
nal), and (ii) L headed clauses (which are undesirablein alogic programming language),
Lygon, isastrict superset of Forum.

6.2 Concurrent Programming

One of the more exciting aspects of linear logic based logic programming languages is
their natural applicability to concurrency. It isinteresting to comparethe linear logic ap-
proach to concurrent logic programming with other approaches.

There are three main “generations’ of concurrent logic programming languages:

1. Committed Choice Guarded Horn Clause Languages

228 CHAPTER 6. COMPARISON TO OTHER WORK

2. Concurrent Constraint Programming Languages
3. Linear Logic Based Languages

Thefirst generation of concurrent logic programming languages emerged in the early
80's. These languages dropped backtracking from Prolog and modified unification so it
would suspend under certain conditions. For example, in GHC, unifying agoa A with
the head of clause cannot bind variablesin A. If the unification could succeed by binding
avariablein A then it suspends. This suspension is the synchronisation primitive.

Languagesinthisfirst generationincluded Parlog [50], Concurrent Prolog [125, chap-
ters2 & 5], GHC[125, chapter 4] and, later, Strand [43]. Although these languages have
become less prominent in the research community they are still aive — see for example
[76,77]. A survey of “first generation” concurrent logic programming can be found in
[126].

The second generation includes such languagesas AKL [80] and Oz [39]. Theselan-
guages move away from the proof search interpretation of computation and view pro-
cesses as operating over a shared constraint store. As a result it becomes difficult to
view these languages as logic programming languages. Since a general comparison be-
tween linear logic programming languages approach to concurrency and more general
approaches (e.g., rendezvous, remote procedure call (RPC) etc.) is beyond the scope of
this section, we shall not discuss these languages further. For a survey of approaches to
concurrency we refer the reader to [17].

Looking at the linear logic way of doing concurrency in alogic programming frame-
work, one of the main differences from first generation languages is that unification is
left unchanged — linear logic provides new operations which allow communication and
synchronisation to be expressed. The primary advantage of thisisthat linear logic based
concurrent logic programming languages have semantics which are both sound and com-
plete with respect to the logic. Although first generation concurrent logic programming
languages are in general sound, they rely heavily on the programmer guiding the proof
search and arefar from complete. Notethat second generation languages al so suffer from
alack of completeness with respect to the logical semantics — there is a distinction be-
tween asking aconstraint and telling aconstraint. If aconstraint isused wrongly, say, itis

6.2. CONCURRENT PROGRAMMING 229

made an ask rather than atell, then the implementation may be unable to find a solution.
In the case where an ask iswrongly made into atell the system could fail.

Although most of the concurrent logic programming languages based on linear logic
have al so sacrificed completeness by opting for “don’t care” nondeterminism (i.e., aban-
doning backtracking) it is possible[131] to use languages with backtracking for concur-
rent programming and guarantee at compiletimethat the appropriate parts of the program
will not backtrack.

A problem with sacrificing completeness is that it opens a gap between the simple
declarative semantics and the visualisation semantics described in section 3.12. Concur-
rent logic programming languages based on linear logic have, or in some cases have the
potential for, simplelogical semantics.

On a more pragmatic level, it appears that linear logic based concurrent logic pro-
gramming languages are more expressive than older proposals. Additionally, they do
not suffer from the problem that multiple inputs to a process need to be merged by the
programmer —leading to both spaghetti code and aloss of efficiency (which can befixed
by adding an additional construct to the language — see [125, chapters 15 & 16]). This
problem also affects “ second generation” concurrent logic programming languages such
as AKL [80, chapter 7].

230 CHAPTER 6. COMPARISON TO OTHER WORK

231

Chapter 7
Conclusions and Further Work

This thesis has covered the design, implementation and applications of the linear logic
programming language Lygon.

In order to design Lygon we defined and compared anumber of characterisers of logic
programming. The notion of |eft-focused proof stepswas applied to capturetheintuition
that aresolution step is guided by the atomic goal. The characterisers were generalised
to the multiple conclusion setting and Lygon was derived using one of the two generali-
sations of our extension of uniformity.

In chapter 4 we tackled the implementation aspects and systematically derived an ef-
ficient set of rules for the management of resources in alinear logic proof. Soundness
and completeness were shown. The problem of active formula selection was al so tack-
led and known properties of linear logic were applied to yield a (partial) solution to this
problem.

Finally, in chapter 5 we investigated methodologies and idiomsfor Lygon program-
ming. A range of program idioms were identified including the use of T to simulate an
affine mode, the use of tokens to control and terminate a concurrent computation, the
use of & to enable non-destructive testing of alinear context and a range of techniques
for manipulating the linear context. Particular applications which were developed in-
cluded concurrent programs, Lygon meta-interpreters and programs operating on graph
data structures.

This thesis has demonstrated that a logic programming language based on multiple

232 CHAPTER 7. CONCLUSIONSAND FURTHER WORK

conclusion linear logic can be systematically derived and effectively implemented. Such
alanguage has its own set of programming idioms and offers significant additional ex-
pressiveness over classical logic programming languages such as Prolog.

The extra features added by the use of linear logic are useful in solving a variety of
problems and add a number of language features which previously were handled in logic
programming languages using ad hoc and non-logical means. Some features which are
handled in a pure logical fashion in Lygon include concurrency, aform of fact assertion
and retraction and of global state and modelling states and actions.

Thework of thisthesisformsasolid foundation for further work with Lygon. 1n addi-
tion to variousissues mentioned in sections 3.12, 4.5 and 5.8 there are a number of areas
for further work.

7.1 Implementation

The current Lygon implementation is an interpreter. Whilst it has been satisfactory for
our work itisdesirableinthelonger termtoinvestigateissuesinvolved in the compilation
of Lygon. In addition to the usual issues associated with compiling Prolog, the efficient
compilation of Lygon requires some knowledge of how the linear context is used by the
program. For example, if it can be determined that a certain predicate does not make any
use of the linear context then we can avoid having to tag the context and pass it to the
predicate. Likewise, if a predicate only makes use of a certain linear fact then we only
need to tag a part of the linear context.

Another application of analyses of context usage concerns active formula selection.
Inagoal of theform p, A we can not commit to resolving p against a program clause
sinceitispossiblethat A may introduceneg p at somepoint. If it can be determined that
thisis not the case then it may be possible to select p for resolution immediately. This
isaso influenced by the connectives which the program uses; given the program p < p
and the goal p 2 G we can not commit to resolving p if G contains T .

Lygon can be seen as “Prolog + linear logic”. Since these two aspects are orthog-
onal it is feasible to consider languages which combine linear logic features with, say,
CLP(R) [79] or Mercury [133]. One strategy for developing aLygon compiler would be

7.2. NEGATION ASFAILURE AND AGGREGATES 233

to consider a“Mercury + Linear Logic” language and compileit into Mercury.

A second area with significant potential for implementation related further work is
the debugging and visualisation of Lygon programs. The operational semanticsof Lygon
programsis considerably more complex than that of Prolog programs dueto the presence
of the linear context and the potential for having multiple goals evolving concurrently.
The current Lygon debugger handles the linear context adequately but is not useful for
debugging concurrent programs. In thelong run it would seem desirable to make use of
algorithmic debugging [127]. By debugging at the logical level the complex operational
semantics can be avoided. A group at Melbourne University is working on advanced
debugging environments for NU-Prolog, Mercury and Lygon.

7.2 Negation as Failure and Aggregates

Presently Lygon offers simple Negation as Failure ala Prolog. The issue of falureis
significantly more interesting for linear logic than it is for classical logic. A proof can
fail for alarger number of reasons — there could be an excess of resources for example.
Limited forms of negation can actually be donein apurefashion in Lygon. Itispossible
touseagoal of theform! F to check that the linear context isempty. Likewise, by using
& and apredicate we can check that certain predicates are absent. If the linear predicates
that may be present are p, g and r then the clause consume < (((q @ r) ® consume) & 1)
and goal consume & G can be used to check that no linear predicates p are present. Itis
unclear to what extent Negation as Failure can be accomplished in pure Lygon.
Anaggregateconstruct collectsall solutionsfor agoal. Intuitively solutions(3z Goal ,Solns)

istrueif Solns contains alist of variable instantiationsfor all solutions of Goal:

Goal[l'l — tl] A Goa.l[l’g — tQ] VANPIRWAN Goa.l[l’n — tn] A Solns = [tl,tg, Ce ,tn]

In Lygon the question of resources arises. Should all solutionsto Goal split the resources
between them (i.e. use ® instead of A)? Should al solutionsto Goal be required to con-
sume the same resources (i.e. use & instead of A)? Does it make sense to allow each
solution to consume any resources desired and have the solutions predicate consume the
entire context (i.e., ensure that solutionsis always called as solutions & G)?

234 CHAPTER 7. CONCLUSIONSAND FURTHER WORK

7.3 Other

Languages such as Lygon and Forum cleanly integrate concurrent behavior, backtrack-
ing, updateabl e state and symbolic computation. Current “hot” areas in which these lan-
guages could potentially be applied include agents (which can be viewed as concurrent
planning (see sections 5.4 and 5.5)), applications on the Web (which generally involve
concurrent symbolic processing) and co-ordination applications.

Other applicationsfor linear logic programming languagesinclude model ling database
transactions and further work in artificial intelligence, such as belief revision.

The derivation of logic programming languages from non-classical logics has so far
focused exclusively on top-down derivations. Inthe context of deductive databases[139]
the complementary approach is of importance. Under the bottom-up execution model
rules are applied to derive new factsfrom old facts. Theimplementationistypically “ set
at atime’ rather than “tuple at atime” and the notion of agoal plays amuch lesser role.
For example, in classical logic, giventherule p(X) — ¢(X) and thefactsp(1) and p(2)
abottom-up implementation will apply the rule to derive the new facts ¢(1) and ¢(2).

The derivation of bottom-up logic programming languages for non-classical logics
has only recently begun to be explored [61]. Applications for the resulting languages
include active databases.

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111:3-57, 1993.

[2] Gul Agha. Concurrent Object-Oriented Programming. Communications of the
ACM, 33(9):125-141, September 1990.

[3] Vladimir Alexiev. Applications of linear logic to computation: An overview.
Technical Report TR93-18, University of Alberta, December 1993.

[4] Vladimir Alexiev. Applicationsof linear logic to computation: Anoverview. Bul-
letin of the IGPL, 2(1):77-107, March 1994.

[5] Vladimir Alexiev. The event calculusasalinear logic program. Technical Report
95-24, University of Alberta, 1995.

[6] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3), 1992.

[7] Jean-Marc Andreoli, Paolo Ciancarini, and Remo Pareschi. Interaction abstract
machines. Technical Report ECRC-92-23, European Computer-Industry Re-
search Centre (ECRC), ECRC GMBH Arabellastr. 17, D-81925 Miinchen, Ger-
many, 1992.

[8] Jean-Marc Andreoli and Remo Pareschi. LO and behold! concurrent structured
processes. SIGPLAN Notices, 25(10):44-56, 1990.

236

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Jean-Marc Andreoli and Remo Pareschi. Communication as fair distribution of
knowledge. In Andreas Parpcke, editor, Sxth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), pages
212-229, 1991.

Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9:445-473, 1991.

Jean-Marc Andreoli and Remo Pareschi. Associative communication and its op-
timization via abstract interpretation. Technical Report ECRC-92-24, European
Computer-Industry Research Centre (ECRC), ECRC GMBH Arabellastr. 17, D-
81925 Minchen, Germany, 1992.

Jean-Marc Andreoli and Remo Pareschi. Abstract interprtation of linear logic pro-
gramming. In D. Miller, editor, International Logic Programming Symposium,
pages 295-314. MIT Press, 1993.

Henry G. Baker. Lively linear Lisp —'look ma, no garbage!’. SGPLAN Notices,
27(8):89-98, August 1992.

Henry G. Baker. Sparse polynomialsand linear logic. S GSAM Bulletin, 27(4):10—
14, December 1993.

Henry G. Baker. Linear logic and permutation stacks — the forth shall be first.
Computer Architecture News, 22(1):34-43, March 1994.

Henry G. Baker. A “linear logic” quicksort. SIGPLAN Notices, 29(2):13-18,
February 1994.

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Computing Surveys, 21(3):261—
322, September 1989.

J-P. Banétre and D. Le Métayer. Programming by multiset transformation. Com-
munications of the ACM, 36(1):98-111, January 1993.

BIBLIOGRAPHY 237

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Erik Barendsen and Sjaak Smetsers. Conventional and uniquenesstypingin graph
rewrite systems. Technical Report CSI-R9328, Computing Science Institute, Uni-
versity of Nijmegen, December 1993.

Erik Barendsen and Sjaak Smetsers. Conventional and uniquenesstypingin graph
rewrite systems (extended abstract). In R. Shyamasundar, editor, Proceedings
of the 13th Conference on the Foundations of Software Technology & Theoreti-
cal Computer Science (FST& TCS13), pages 41-51. Springer-Verlag, LNCS 761,
1993.

Erik Barendsen and Sjaak Smetsers. Uniqueness type inference. In
M. Hermenegildo and D. Swierstra, editors, Proceedings of Programming Lan-
guages. Implementation, Logics and Programs (PLILP’95), pages 189-207.
Springer-Verlag, LNCS 982, 1995.

Gérard Berry and Gérard Boudol. The chemical abstract machine. In Conference
Record of the Seventeenth Annual Symposiumon Principles of Programming Lan-
guages, pages 81-94, San Francisco, California, January 1990.

Edoardo S. Biagioni. A Structured TCPin Standard ML. Technical Report CMU-
CS-94-171, Department of Computer Science, Carnegie-Mellon University, July
1994.

A. W. Bollen. Relevant logic programming. Journal of Automated Reasoning,
7:563-585, 1991.

A. Bonner and L. McCarty. Adding negation-as-failureto intuitionistic logic pro-
gramming. In Saumya Debray and Manuel Hermenegildo, editors, Proceedings
of the 1990 North American Conference on Logic Programming, pages 681703,
Austin, October 1990. ALP, MIT Press.

John Boreczky and Lawrence A. Rowe. Building Common Lisp Applications
with Reasonable Performance. Technical Report UCB//CSD-93-763, University
of California at Berkeley, Department of Computer Science, June 1993.

238

BIBLIOGRAPHY

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Nicholas Carriero and David Gelernter. How to write parallel programs: A guide
to the perplexed. ACM Computing Surveys, 21(3):323-357, September 1989.

Nicholas Carriero and David Gelernter. Lindain context. Communications of the
ACM, 32(4):444-458, April 1989.

Stefania Castellani and Paolo Ciancarini. Exploring the coordination space with
LO. Technical Report UBLCS-94-6, University of Bologna, April 1994,

Iliano Cervesato. Lollipopstasteof vanillatoo. InA. Momiglianoand M. Ornaghi,
editors, Proof-Theoretical Extensions of Logic Programming, pages 60-66, Santa
Margherita Ligure, Italy, June 1994.

[liano Cervesato, Luca Chittaro, and Angelo Montanari. Modal event calculusin
Lolli. Technical Report CMU-CS-94-198, School of Computer Science, Carnegie
Mellon University, October 1994.

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource man-
agement for linear logic proof search. In R. Dyckhoff, H. Herre, and P. Schroeder-
Heister, editors, Proceedings of the Fifth International Workshop on Extensions of
Logic Programming — ELP’ 96, LNAI 1050, pages 67-81. Springer, 1996.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory manage-
ment invariants for alanguage based on linear logic. In Lisp and Functional Pro-
gramming, pages 139-150. ACM, 1992.

Jawahar Lal Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, 1995.

Sitt Sen Chok and Kim Marriott. Parsing visual languages. In Proceedings of the
Eighteenth Australasian Computer Science Conference, pages 9098, 1995.

Andrew Davison. A concurrent logic programming encoding of Petri nets. In
G. Gupta, G. Mohag, and R. Topor, editors, Proceedings of the 16th Australian
Computer Science Conference, pages 379-386, 1993.

BIBLIOGRAPHY 239

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

W. De Hoon. Designing a spreadsheet in a pure functional graph rewriting lan-
guage. Master’sthesis, Catholic University Nijmegen, 1993.

Giorgio Delzanno and Maurizio Martelli. Objectsin Forum. In John Lloyd, editor,
International Logic Programming Symposium, pages 115-129, Portland, Oregon,
December 1995. MIT Press.

Denys Duchier. The Oz programming system.
http://ps-ww. df ki . uni -sb. de/ oz/ , 1996.

P. Dung. Hypothetical logic programming. In Proc. 3rd International Workshop
on Extensions of Logic Programming, pages 61—73. Springer-Verlag, 1992.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionisticlogic. The Jour-
nal of Symbolic Logic, 57(3):795-807, September 1992.

Norbert Eisinger. A multi-agent diary manager coordinated with LO. Techni-
cal Report ECRC-93-11, European Computer-Industry Research Centre (ECRC),
ECRC GMBH Arabellastr. 17, D-81925 M inchen, Germany, July 1993.

lan Foster and Stephen Taylor. Strand: A practical parallel programming tool. In
Ewing L. Lusk and Ross A. Overbeek, editors, Logic Programming, Proc. of the
North American Conference, pages 497-512, Cleveland, 1989. The MIT Press.

Didier Galmiche and Guy Perrier. On proof normalization in linear logic. Theo-
retical Computer Science, 135(1):67—110, December 1994.

G. Gentzen. Investigationsinto logical deductions, 1935. In M.E. Szabo, editor,
The Collected Papersof Gerhard Gentzen, pages 68—131. North-Holland Publish-
ing Co., Amsterdam, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Jean-Yves Girard. Linear logic : Its syntax and semantics. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors, Advancesin Linear Logic, chapter 0.
Cambridge University Press, 1995.

240

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

JY. Girard. Logic and exceptions: A few remarks. Technical Report 18, Equipe
de logique Mathéematique, December 1990.

J.Y. Girard and Y. Lafont. Linear logic and lazy computation. In TAPSOFT.
Springer-Verlag LNCS 250, 1987.

S. Gregory. Parallel logic programming in PARLOG. Addison Wesley, Reading,
Mass., 1987.

Alessio Guglielmi. Concurrency and plan generation in a logic programming
language with a sequential operator. In Pascal Van Hentenryck, editor, Logic
Programming - Proceedings of the Eleventh International Conference on Logic
Programming, pages 240-254, Massachusetts I nstitute of Technology, 1994. The
MIT Press.

S. Hanks and D. MacDermott. Nonmonotonic logic and temporal projection. Ar-
tificial Intelligence, 33(3):379-412, 1987.

J. Harland. On normal forms and equivalence for logic programs. In Krzysztof
Apt, editor, Proceedings of the Joint International Conference and Symposium
on Logic Programming, pages 146—160, Washington, USA, November 1992. The
MIT Press.

James Harland. On Hereditary Harrop Formulae as a Basis for Logic Program-
ming. PhD thesis, University of Edinburgh, 1991.

James Harland. On goal-directed provability in classical logic. In Proceedings of
the | CLP’ 94 Post-conference Workshop on Proof-Theoretical Extensions of Logic
Programming, pages 1018, Santa Margherita Ligure, June 1994.

James Harland. A proof-theoretic analysis of goal-directed provability. Journal
of Logic and Computation, 4(1):69-88, 1994.

James Harland and David Pym. A note on the implementation and applications of
linear logic programming languages. In Gopal Gupta, editor, Seventeenth Annual
Australasian Computer Science Conference, pages 647—658, 1994.

BIBLIOGRAPHY 241

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

James Harland, David Pym, and Michagl Winikoff. Programming in Lygon: A
brief overview. In John Lloyd, editor, International Logic Programming Sympo-
sium, page 636, Portland, Oregon, December 1995. MIT Press.

James Harland, David Pym, and Michaegl Winikoff. Programming in Lygon: A
system demonstration. In Martin Wirsing and Maurice Nivat, editors, Algebraic
Methodology and Software Technology, LNCS 1101, page 599. Springer, July
1996.

James Harland, David Pym, and Michael Winikoff. Programming in Lygon: An
overview. In Martin Wirsing and Maurice Nivat, editors, Algebraic Methodology
and Software Technology, LNCS 1101, pages 391-405. Springer, July 1996.

James Harland, David Pym, and Michael Winikoff. Bottom-up execution of lin-
ear logic programming languages. Technical Report 97/1, Melbourne University,
Department of Computer Science, Parkville 3052, AUSTRALIA, 1997.

P. H. Hartel. Benchmarking implementationsof lazy functional languages|| —two
yearslater. Technical Report CS-94-21, Dept. of Comp. Sys, Univ. of Amsterdam,
December 1994.

Pieter Hartel and K oen Langendoen. Benchmarking implementationsof lazy func-
tional languages. In Functional Programming & Computer Architecture, pages
341-349, Copenhagen, June 93.

Fergus Henderson. Home page of the Mercury project.
http://ww. cs. mu. oz. au/ mer cury, 1996.

JoshuaHodas. Specifying filler-gap dependency parsersin alinear-logic program-
ming language. In K. Apt, editor, Joint International Conference and Symposium
on Logic Programming, pages 622—636. MIT Press, November 1992.

JoshuaHodas. Logic Programmingin Intuitionistic Linear Logic: Theory, Design
and Implementation. PhD thesis, University of Pennsylvania, 1994.

242 BIBLIOGRAPHY

[67] JoshuaHodas. Lolli home page.
http://ww. cs. hnt. edu/ “hodas/research/ 1ol i/ ,1995.

[68] Joshua S. Hodas. Lolli: An extension of Aprolog with linear context manage-
ment. In D. Miller, editor, Workshop on the AProlog Programming Language,
pages 159-168, Philadel phia, Pennsylvania, August 1992.

[69] Joshua S. Hodas and Dale Miller. Logic programming in afragment of intuition-
istic linear logic (extended abstract). In Proc. IEEE Symposiumon Logic in Com-
puter Science, pages 32-42. |EEE, 1991.

[70] Joshua S. Hodas and Dale Miller. Logic programming in afragment of intuition-
istic linear logic. Information and Computation, 10(2):327-365, 1994.

[71] Joshua S. Hodas and Jeffrey Polakow. Forum as a logic programming language:
Preliminary results and observations.
http://ww. cs. hnt. edu/ " hodas/ paper s/, 1996.

[72] Jonathan Hogg and Philip Wadler. Real world applications of functional program-
ming. Availablefrom htt p: //ww. dcs. gl a. ac. uk/fp/real worl d/,
November 1996.

[73] H. Hosoya, N. Kobayashi, and A. Yonezawa. Partial evaluation for concurrent
languages and its correctness. Technical Report To Appear., Department of Infor-
mation Science, University of Tokyo, 1996.

[74] Paul Hudak. Conception, evolution and application of functional programming
languages. ACM Computing Surveys, 21(3):359-411, September 1989.

[75] John Hughes. Why functional programming matters. In David A. Turner, editor,
Research Topicsin Functional Programming, University of Texas at Austin Year
of Programming Series, chapter 2, pages 17-42. Addison Wesley, 1990.

[76] Matthew Huntbach. Anintroductionto RGDC asaconcurrent object-oriented |an-
guage. Journal of Object-Oriented Programming, 8(5):29-37, September 1995.

BIBLIOGRAPHY 243

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

[87]

Matthew M. Huntbach and Graem A. Ringwood. Programming in concurrent
logic languages. |EEE Software, pages 71-82, November 1995.

Graham Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(3):323-343, July 1992.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Confer-
ence Record of the Fourteenth ACM Symposium on Principles of Programming
Languages, pages 111-119, January 1987.

Sverker Janson. AKL: A Multiparadigm Programming Language. PhD thesis,
Department of Computer Science, Uppsala University, 1994.

S. Kleene. Introduction to Metamathematics. North Holland, 1952.
S. Kleene. Mathematical Logic. Wiley and Sons, 1968.

S.C. Kleene. Permutability of inferencesin Gentzen’scalculi LK and LJ. Memoirs
of the American Mathematical Society, 10:1-26, 1952.

N. Kobayashi, M. Nakade, and A. Yonezawa. Static analysis on communication
for asynchronous concurrent programming languages. Technical Report 95-04,
Department of Information Science, University of Tokyo, April 1995.

Naoki Kobayashi and Akinori Yonezawa. ACL — a concurrent linear logic pro-
gramming paradigm. In Dale Miller, editor, Logic Programming - Proceedings
of the 1993 International Symposium, pages 279-294, Vancouver, Canada, 1993.
The MIT Press.

Naoki Kobayashi and Akinori Yonezawa. Logical, testing, and observation equiv-
alence for processes in alinear logic programming. Technical Report 93-4, De-
partment of Information Science, University of Tokyo, 1993.

Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundationsfor concur-
rent object-oriented programming. In Carrie Wilpolt, editor, Ninth Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 31-45. ACM, October 1994.

244

BIBLIOGRAPHY

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Naoki Kobayashi and Akinori Yonezawa. Typed higher-order concurrent linear
logic programming. Technical Report 12, University of Tokyo, 1994.

Alexel P. Kopylov. Decidability of linear affinelogic. In D. Kozen, editor, Tenth
|EEE Symposium on Logic in Computer Science, pages 496-504, June 1995.

Robert Kowalski and Merek Sergot. A logic-based calculus of events. New Gen-
eration Computing, 4(1):67-95, 1986.

Yves Lafont. Introduction to linear logic. Lecture Notes for the Summer School
in Constructive Logics and Category Theory, August 1988.

Yves Lafont. Functional programming and linear logic. Lecture Notes for the
Summer School on Functional Programming and Constructive Logic. Glasgow.,
September 1989.

Patrick Lincoln, Andre Scedrov, and Natarajan Shankar. Linearizing intuitionistic
implication. Annals of Pure and Applied Logic, 60:151-177, 1993.

Patrick D. Lincoln. Computational Aspectsof Linear Logic. PhD thesis, Stanford
University, August 1992.

P.D. Lincolnand N. Shankar. Proof search in first-order linear logic and other cut-
free sequent calculi. In Ninth [EEE Symposium on Logic in Computer Science,
pages 282-291, 1994.

J. W. Lloyd. Combining functional and logic programming languages. In
M. Bruynooghe, editor, Proceedings of the 1994 International Logic Program-
ming Symposium, pages 43-57. MIT Press, 1994.

J. W. Lloyd. Practical advantages of declarative programming. In Joint Confer-
ence on Declarative Programming, GULP-PRODE’ 94, 1994.

lan Mackie. Lilac: A functional programming language based on linear logic.
Master’sthesis, Department of Computing, Imperial College of Science, Technol-
ogy and Medicine, September 1991.

BIBLIOGRAPHY 245

[99] lan Mackie. Lilac: A functional programming language based on linear logic.
Journal of Functional Programming, 4(4):395-433, October 1994.

[100] Dave Mason. Applications of functional programming. Available from
http://ww. scs. ryerson. ca/ dmason/ conmon/ functional . htm ,
June 1997.

[101] M. Masseron. Generating plansin linear logic I1: A geometry of conjunctive ac-
tions. Theoretical Computer Science, 113:371-375, 1993.

[102] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plansin linear logic. In
K.V. Nori and C.E. Veni Madhavan, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science, pages63—75. Springer-Verlag, LNCS472,
December 1990.

[103] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plansin linear logic I: Ac-
tions as proofs. Theoretical Computer Science, 113:349-371, 1993.

[104] Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding transition
systemsin sequent calculus: Preliminary report. Electronic Notes in Theoretical
Computer Science, 3, 1996.

[105] D. Miler, G. Nadathur, and A. Scedrov. Hedreditary Harrop formulas and uni-
form proof systems. In Proceedings of the Second Annual Conference on Logics
in Computer Science, pages 98105, June 1987.

[106] D. Miller. A muiltiple-conclusion meta-logic. Theoretical Computer Science,
165(1):201-232, 1996.

[107] DaeMiller. A logical analysisof modulesinlogic programming. Journal of Logic
Programming, pages 79-108, 1989.

[108] Dale Miller. The m-calculus as a theory in linear logic: Preliminary results. In
E. Lammaand P. Méllo, editors, Proceedings of the Workshop on Extensions of
Logic Programming, pages 242—265. Springer-Verlag LNCS 660, 1992.

246 BIBLIOGRAPHY

[109] Dae Miller. A multiple-conclusion meta-logic. In Logic in Computer Science,
pages 272-281, 1994.

[110] Dale Miller. A survey of linear logic programming. Computational Logic: The
Newsl etter of the European Networkin Computational Logic, 2(2):63-67, Decem-
ber 1995.

[111] Dale Miller. The forum specification language.
http://ww. ci s. upenn. edu/ ~dal e/ f oruni , 1996.

[112] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as afoundation for logic programming. Annals of Pure and Applied Logic,
51:125-157, 1991.

[113] Alberto Momigliano. Theorem proving viauniform proofs. Manuscript, 1993.

[114] Gopalan Nadathur. Uniform provability in classical logic. Technical Report TR-
96-09, University of Chicago, 1996.

[115] Gopalan Nadathur and Donald W. Loveland. Uniform proofsand disjunctivelogic
programming (extended abstract). In Tenth Annual Symposiumon Logic in Conm+
puter Science, pages 148-155, July 1995.

[116] LeeNaish. Automating control of logic programs. Journal of Logic Programming,
2(3):167-183, October 1985.

[117] Richard A. O’'Keefe. The Craft of Prolog. MIT Press, 1990.

[118] Mehmet A. Orgun and Wanli Ma. An overview of temporal and modal logic
programming. In D. M. Gabbay and H. J. Ohlbach, editors, First International
Conference on Temporal Logic, pages 445-479. Springer-Verlag LNAI 827, July
1994.

[119] M. Persson, K. Oedling, and D. Eriksson. Switching software architecture proto-
type using real time declarative language. In International Switching Symposium,
October 1992.

BIBLIOGRAPHY 247

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

J.L. Peterson. Petri nets. Computing Surveys, 9(3):223-252, September 1977.

Frank Pfenning, editor. Typesin Logic Programming. MIT Press, Cambridge,
Massachusetts, 1992.

David Pym and James Harland. A uniform proof-theoretic investigation of lin-
ear logic programming. Journal of Logic and Computation, 4(2):175-207, April
1994,

A. Scedrov. A brief guidetolinear logic. In G. Rozenberg and A. Salomaa, editors,
Current Trendsin Theoretical Computer Science, pages 377—394. World Scientific
Publishing Co., 1993.

A. Scedrov. Linear logic and computation: A survey. In H. Schwichtenberg, ed-
itor, Proof and Computation, Proceedings Marktoberdorf Summer School 1993,
pages 379-395. NATO Advanced Science Institutes, Series F, Springer-Verlag,
Berlin, 1995.

Ehud Shapiro, editor. Concurrent Prolog. MIT Press, 1987.

Ehud Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413-510, September 1989.

Ehud Y. Shapiro. Algorithmic program debugging. MIT Press, Cambridge, Mas-
sachusetts, 1983.

Toshihiro Shimizu and Naoki Kobayashi. HACL Version 0.1 user’smanual. FTP
with HACL release cami |l e.is.s.u-tokyo. ac. j p: pub/ hacl , June
1994,

Duncan C. Sinclair. Solid modelling in Haskell. In Glasgow functional program-
ming wor kshop, pages 246-263. Springer-Verlag, 1990.

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer. Guar-
anteeing safe destructive updates through atype system with uniquenessinforma
tion for graphs. In Schneider and Ehrig, editors, Proceedings of Graph Transfor-
mationsin Computer Science, pages 358-379. Springer-Verlag, LNCS 776, 1994.

248

BIBLIOGRAPHY

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Zoltan Somogyi. Stability of logic programs: how to connect don’t-know nonde-
terministic logic programs to the outside world. Technical Report 87/11, Depart-
ment of Computer Science, Melbourne University, September 1987.

Zoltan Somogyi, Fergus Henderson, Thomas Conway, Andrew Bromage, Tyson
Dowd, David Jeffery, Peter Ross, Peter Schachte, and Simon Taylor. Status of
the Mercury system. In Proceedings of the JICSLP’ 96 Workshop on Parallelism
and I mplementation Technology for (Constraint) Logic Programming Languages,
pages 207-218, 1996.

Zoltan Somogyi, Fergus Henderson, Thomas Conway, and Richard O’ Keefe.
Logic programming for the real world. In Donald A. Smith, editor, Proceedings
of the ILPS 95 Postconference Workshop on Visions for the Future of Logic Pro-
gramming, pages 83-94, Portland, Oregon, 1995.

Leon Sterling and Ehud Shapiro. The Art of Prolog (second edition). MIT Press,
1994.

Tanel Tammet. Proof search strategiesin linear logic. Programming M ethodol ogy
Group 70, University of Goteborg and Chalmers University of Technology, March
1993.

Tanel Tammet. Completeness of resolution for definite answers. Programming
Methodology Group 79, University of Goteborg and ChalmersUniversity of Tech-
nology, April 1994.

Naoyuki Tamura and Yukio Kaneda. Resource management method for a com-
piler system of a linear logic programming language. In Michael Maher, editor,
Proceedings of the 1996 Joint Inter national Conference and Symposiumon Logic
Programming, page 545. MIT Press, 1996.

Naoyuki Tamuraand Yuko Kaneda. Extension of WAM for alinear logic program-
ming language. In T. Ida, A. Ohori, and M. Takeichi, editors, Second Fuji Inter-
national Workshop on Functional and Logic Programming, pages 33-50. World
Scientific, November 1996.

BIBLIOGRAPHY 249

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, P. Stuckey, T. Leask, and
J. Harland. The Aditi deductive database system. VLDB Journal, 3(2):245-288,
April 1994,

Paolo Volpe. Concurrent logic programming as uniform linear proofs. In Giorgio
Levi and Mario Rodriguez-Artalgjo, editors, Algebraic and Logic Programming,
pages 133-149. Springer-Verlag LNCS 850, September 1994.

Philip Wadler. Comprehending monads. In ACM Conference on Lisp and Func-
tional Programming, pages 61-78, Nice, France, June 1990.

Philip Wadler. The essence of functional programming (invited talk). 1n 19'th
ACM Symposium on Principles of Programming Languages, Albuquergue, New
Mexico, January 1992.

David Wakeling and Colin Runciman. Linearity and laziness. In Functional Pro-
gramming and Computer Architecture, pages 215-240. Springer-Verlag LNCS
523, 1991.

David S. Warren. Programming the PTQ grammar in XSB. In Raghu Ra-
makrishna, editor, Applicationsof Logic Databases, pages 217-234. Kluwer Aca
demic, 1994.

G. White. The design of a situation-based Lygon metainterpreter: 1. Simple
changes and persistence. Technical Report 729, Department of Computer Science,
Queen Mary and Westfield College, University of London, October 1996.

Michael Winikoff. Hitch hiker’s guide to Lygon 0.7. Technical Report 96/36,
Melbourne University, October 1996.

Michael Winikoff. Lygon home page.
http://ww. cs. mu. oz. au/ " w ni kof f/ | ygon, 1996.

Michael Winikoff and JamesHarland. Deterministic resource management for the
linear logic programming language Lygon. Technical Report 94/23, Melbourne
University, 1994.

250

BIBLIOGRAPHY

[149]

[150]

[151]

[152]

[153]

[154]

Michael Winikoff and James Harland. |mplementation and devel opment issuesfor
thelinear logic programming language Lygon. In Australasian Computer Science
Conference, pages 563-572, February 1995.

Michael Winikoff and James Harland. Implementing the linear logic program-
ming language Lygon. In John Lloyd, editor, International Logic Programming
Symposium, pages 6680, Portland, Oregon, December 1995. MIT Press.

Michael Winikoff and James Harland. Deriving logic programming languages.
Technical Report 95/26, Melbourne University, 1996.

Michael Winikoff and James Harland. Some applications of the linear logic pro-
graming language Lygon. In Kotagiri Ramamohanarao, editor, Australasian Com-
puter Science Conference, pages 262—271, February 1996.

Yi Xiao Xu. Debugging environment design for the logic programming language
Lygon. Master’s thesis, Department of Computer Science, Royal Melbourne In-
dtitute of Technology, February 1995.

HelinnaYiu. Programming constructsfor Lygon. Master’sthesis, Department of
Computer Science, Royal Melbourne Institute of Technology, 1997.

251

Appendix A

Proofsfor Chapter 3

A.1 Proofsfor Section 3.3

PROPOSITION 2

B ~ A.

Proof: For B to be stronger than A means that for any program and for any goal, the
existence of a proof satisfying criterion B implies that there must be a proof satisfying
criterion A. In this case, the proof satisfying B has no sub-proof of the formI" - which
impliesthat it has no occurrence of the weakening right rule sincein asingle conclusioned
setting, weakening right introduces a sequent of the above form. Contraction on theright
is not relevant to a single conclusioned setting and hence the given proof also satisfies
criterion A. &

PROPOSITION 3

A+ B.

Proof: There exist agoal and a program which have a proof satisfying criterion A but
which do not have a proof satisfying criterion B. Consider the proof:

pEp
p,—phE

This proof does not use the weakening right rule yet it has an unavoidable proof of a
sequent of theform " + A

252 APPENDIX A. PROOFSFOR CHAPTER 3

PROPOSITION 4

C + A.

Proof: There exist a program and goal which can be proven in a way which satisfies
criterion C' but which cannot be proven in away that satisfies criterion A. Consider the

proof:
ml—
o
¢, =g b 3ap(x)
|

PROPOSITION 5
C + B.
Proof: B~ A andC - A, by transitivity we havethat C + B. R

PROPOSITION 6

A4 C,BAC.

Proof: The (only) proof of 3xp(x) - Jxp(x) satisfies both criteria A and B yet violates
criterionC'.

PROPOSITION 7
Dstrong ~ Dweak-

Proof: Obvious from definition. B

PROPOSITION 8

Dyear ~ C.

Proof: Consider a proof satisfying D,,... Which violates C'. We show that this proof
can always be transformed into a proof satisfying C'. A violation of C' is an inference
whose conclusion is of the formT" = dxzF. Since the proof satisfies D.,.., ad has a
non-atomic goal the sequent must be the conclusion of someright rule. Thisright rule can
be either 3 — in which case we are done — or a structural rule, specifically weakening
(since contraction right is not applicable in a single conclusion setting). By applying the

A.1. PROOFSFOR SECTION 3.3 253

following transformation we obtain a proof which satisfies criterion C'.

'

N e W R
FF_EleW_R - MH—R

I't-dzF

PROPOSITION 9

Dstrong ~ O

Proof: In aproof that satisfies D4, any inference of the formI" = 3z F' must be the
conclusion of an 3 rule and hence criterion C' is satisfied. B

PROPOSITION 10
C + D.
Proof: The only possible proof of the sequent 7p =7p satisfies criterion C' yet violates

both criteria D,eqr @A Dyrong

— A

pETp S,
o ETp

PROPOSITION 11

Dueat #* Dstrong-

Proof: The sequent p, p* - (p ® q) is provablein affine logic (which allows weakening

but not contraction), however the only proof possible, begins by applying theW -R rule.
Thisproof satisfiescriterion D, yet necessarily violatescriterion Diyong. HENCE, Dyeqs 7~

Dstrong-

pHp
p,p- pkp pthgq
p,p-Fp®yq p,p-Ep®yq

254 APPENDIX A. PROOFSFOR CHAPTER 3

PROPOSITION 12

A+~ D,B+¥ D.

Proof: The proof of 3xF' = 3z F necessarily violates criterion D yet satisfies both cri-
teriaA and B. &

PROPOSITION 13

D /4 A.

Proof: The sequent q,—q + 3xp(x) can be proven in away which satisfies criterion D
but it cannot be proven without violating A. The proof involves moving —q across to
the succedent. In order to be able to apply the - — L rule we need an empty succedent.
Since the goal is not of the form —F' we can only obtain an empty succedent through an
application of W — R which violates criterion A. B

PROPOSITION 14

D + B.

Proof: The following proof is uniform according to D but it necessarily involves a suc-
cessful proof of a sequent of theform T +

l_
i

This hinges on the use of the linear logic connective L asan explicit request to check
whether the program is a tautol ogy.

PROPOSITION 15

F'~ Dytrong ~ Dueat-

Proof: obvious from definition. &

PROPOSITION 16

D+ E.

Proof: Consider the example given for criterion E. It satisfies criterion D but not crite-
rionE.

PROPOSITION 17

F - C.

Proof: By transitivity from F ~~ D and D ~ C. R

A.1. PROOFSFOR SECTION 3.3 255

PROPOSITION 18
C ¥ F.
Proof: By transitivity from F ~ D andC D. R

PROPOSITION 19
A/ F.
Proof: By transitivity fromF ~ D and A + D. R

PROPOSITION 20

F~ A,

Proof: Consider asequentT” = G occurring in a proof which satisfies criterion F'. There
are two cases:

1. G isnon-atomic: therule used isthe rule which introduces its topmost connective.
Hence the rule used is not weakening-right.

2. G isatomic: therule usedis aleft or axiom rule and hence is not weakening-right.

Hence the proof satisfies criterion A. B

PROPOSITION 21
F -+ B.
Proof: The only proof of thesequent 1.9 p+ p is

— 1 - L —— Az
F F
P p?—L

Lepkp

Observe that the proof satisfies criterion F'; however it involves a proof of a sequent of
theformT + and hence violates criterion B. B

PROPOSITION 22
B+ F.
Proof: FollowsfromB + D and F ~~ D. R

PROPOSITION 23
E 4 C.

256 APPENDIX A. PROOFSFOR CHAPTER 3

Proof: The following proof satisfies criterion E' yet necessarily violates criterion C'.

Fly/a] - Fly/a]
Fly/x]F dxF
dxF F Az F

[

COROLLARY:E 4 F ,E + D (sinceF ~ C and D ~ C)

PROPOSITION 24

E + B.

Proof: Follows by transitivity from F +/ B and F ~~ E. B

PROPOSITION 25

E 4 A.

Proof: The following proof satisfies criterion E' yet necessarily violates criterion A.

pEp
p,—phE
p,—p t Jxq
]
PROPOSITION 26
B+ E.

Proof: The proof of the sequent
r—(¢g—p),q@rkp

satisfies criterion B but necessarily violates criterion E since we need to decompose one

program formula before using another program formula and hence we cannot “focus”’ on
asingle program formula D.

qrq pkp

rer g—pgkp

r—o (¢ —op),qrkp
r—o(qg—p),q@rkp

—o —L

[
COROLLARY:A v FE (SnceB ~~ A)

A.1. PROOFSFOR SECTION 3.3 257

LEMMA 27

LetT + F beaprovable sequent wherel” and F' are in alogic subset which satisfies cri-
terion D,,0ny. Then al sequents occurring in the proof are in the logic subset satisfying
criterion D iyopg-

Proof: There are two cases: I’ can be either an atom or a compound formula. If F' isa
compound formula then we know that there is a proof of the form

Il

I
CFF

x* — R

Consider now the sequent I'' = F'. It has a proof which satisfies criterion Do, —
namely 11. Hencel” & F' satisfies Dyyong. If F' isatomic then precisely the same situa-
tion entails except that x — R is replaced by = — L. We can apply induction upwards and
conclude that all sequents occurring in the proof satisfy criterion Dy o,. B

LEMMA 28

LetT + F be aprovable sequent whereT" and F' are in alogic subset which satisfies
criterion E. Then all sequents occurring in the proof are in the logic subset satisfying
criterion E.

Proof: The proof isanalogousto that of the previouslemma. The main differenceisthat
a compound goal could be the conclusion of either aleft or aright rule. B

PROPOSITION 29

LetT' = A beasequent in alogic subset which satisfies criteria E and Dy, @nd such
that " = A is provable. Then there exists aproof of I' = A which satisfies criterion F'.
Proof: We apply induction from the root of the proof to the leaves. The base case is
an inference with no premises. If the goal is atomic then since criterion E' is satisfied
the inference must be an Az rule. If the goal is compound then since criterion D ;.oy,4 IS
satisfiedtherulemust bearight logical rule. In either casetheinference satisfies criterion
F'. For theinduction step consider asequent at the root of a (sub)-proof. By theinduction
hypothesis the sequent satisfies criteria E' and Dg,o,,4. There are two cases:

1. The goal is compound: Since criterion Dy, IS Satisfied there is a proof which
begins with a right rule where the premise(s) of the rule satisfy criterion Dy, opg.

258 APPENDIX A. PROOFSFOR CHAPTER 3

It is not immediately obvious that the premise(s) must also satisfy criterion E —
lemma 28 guarantees that there exists a proof of the sequent, but the proof may not
necessarily begin with aright rule. We can however transform a proof satisfying
criterion E which begins with a left rule into one beginning with a right rule by
permuting the appropriateright rule down. Theright ruleisknown to permute with
all left rules since criterion Do, IS Satisfied.

2. Thegoal isatomic: Sincecriterion E' is satisfied there is aleft-focused proof of the
sequent. Furthermorethe premise(s) of thefirst inference satisfies both criterion £
(by lemma 28) and criterion Do, (by lemma 27).

In either case the appropriate condition for criterion F' is met. B

A.2 Proofsfor Section 3.5

PROPOSITION 43

B 4 A.

Proof: Thefollowing classical logic proof of the sequent p(a) V p(b) + Jzp(x) satisfies
criterion B but involves an application of contraction-right.

- Ar Ax

p(a) F pla) p(b) - p(b)

O T Tr B
p(a) v p(b) = Jep(z), Jap(z)

p(a) V p(b) F Jzp(z)
n

Note that the proof used the multiplicative presentation of conjunction

TELFA T, Rk A

O,I'FiVFE,FA A -

since the standard additive rule encodes applications of contraction.

PROPOSITION 44
A+ B.
Proof: There exists a sequent which has a proof satisfying A but which does not have a

A.2. PROOFSFOR SECTION 3.5 259

proof satisfying B. Consider the proof

pkEp
p,—pE

This proof does not use weakening or contraction but it has an unavoidable proof of a
sequent of theformT' . B

PROPOSITION 45

Cstr(mg ~ C.

Proof: Obvious from definition. B

PROPOSITION 46

C # A, Cutrong # A.

Proof: Thereexist aprogram and goal which can be proveninaway which satisfiescrite-
rionC' (and C,0,,4) but which cannot be proven without violating criterion A. Consider
the sequent q, —~q = Jxp(x). In order to goply the axiom rule we need to eliminate the
formula3zp(x). This can be only be done using a weakening right rule which viol ates
criterion A. It is possible to prove this sequent in a way which satisfies criterion C':

qkq
— L _W-R
aFaop) o o
gt q,3wp(x)

=7
q,—q - Jwp(x)

[
PROPOSITION 47
C # B, Cotrong 7 B.
Proof: Consider the sequent | + Jz(?p(x)). It is provable and there is only a single
possible proof — we need to eliminate the goal formula so we can apply the rule 1 —
L. The elimination is done in away which satisfies criteriaC' and Cl,.,,, but the proof
involves a subproof of L + which violates criterion B.

— 1 -L

_LE e
T };

1+ 3Jz(?p(x))

260 APPENDIX A. PROOFSFOR CHAPTER 3

PROPOSITION 48

A4 C,BAC, A% Carong » B # Cstrong-

Proof: The sequent 3xp(x) + Jxp(x) can be proven in precisely one way. This proof
satisfies both criteria A and B and violates criteriaC' and Clsyon g

p(Y) Fp(Y)
p(Y) F Jap(z)
Jrp(x) F Jzp(x)

i-R
J—-L

PROPOSITION 49
B+ D,A+ D.
Proof: Consider the proof of 3xF' + dzF. R

PROPOSITION 50

Dy~ A.

Proof: There aretwo cases. If the goal contains a compound formula then the rule used
to infer the sequent must have been a right rule which introduces a topmost connective
and hence cannot have been aright structural rule. If there are no compound goals then
the sequent must be the conclusion of either an Ax or |eft rule and hence cannot be aright
structural rule. &

PROPOSITION 51

Dg ~ A.

Proof: Therearetwo cases. If thereare no atomsinthe goal then theruleusedtoinfer the
sequent must have been aright rule which introduces atopmost connective and hence can
not have been aright structural rule. Otherwise the sequent must be either the conclusion
of aright rule as above or the conclusion of Ax or aleft rule and in neither case can the
rule be aright structural rule. B

PROPOSITION 52

D ~ C.

Proof: Consider a sequent of the formI" = 3z F'. Since it has only one compound con-
clusion and no atomic goals, it must be the result of an3 — R rule and hence it satisfies
c.n

A.2. PROOFSFOR SECTION 3.5 261

PROPOSITION 53

Dy ~ Cirong-

Proof: Consider asequent of theformT' = 3z F, A. Accordingto D 4 thereexistsaproof
where this sequent is the conclusion of an 3-R rule. This proof satisfies Cyyop,. B

PROPOSITION 54

DS 7@ Cstrong-

Proof: Consider the proof of the sequent - Jxp(x) ", p(1) & p(2). This proof satisfies
Dg but not Cyyop,q. B

PROPOSITION 55

D + B.

Proof: The following proof is uniform according to criterion D but it necessarily in-
volves a successful proof of a sequent of the form T .

I_
11

[|
PROPOSITION 56

C%_)Dycstrong 7%_) D.
Proof: Consider the proof of the sequenta ® b+ a @ b. B

PROPOSITION 57

Dg > Dy.

Proof: Follows by transitivity from the factsthat Dg /> Ciirong @d D g ~> Ciirong. B
PROPOSITION 58

Dy~ Dg.

Proof: There are four cases corresponding to the four types of sequents that can occur
in a proof:

I' = C: D, guarantees that the sequent is the conclusion of aright rule which in-
troduces the topmost connective of aformulaF € C. This satisfies Dg.

I' = A: D, guarantees that the proof of the sequent is left-focused which satisfies
Dg.

262 APPENDIX A. PROOFSFOR CHAPTER 3

I' = A,C: Dg requires that the proof be either left-focused or the conclusion of a
right rule. D 4 guarantees the |atter.

' - Neither D 4, nor Ds have any restrictions on this case.

PROPOSITION 59

Let Ds, be acriterion that modifies Ds by requiring that sequents of the formT" = C
have a proof which introduces the topmost connective of F foral F € C. Then Ds, is
equivalentto D 4.

Proof: Observethat for sequentswhich are of theformT - or " - A thetwo definitions
(and indeed D 5 aswell) agree on the constraints to be imposed. For sequents of the form
[= C the requirement that right connectives permute gives agreement between D 4 and
Ds..

Consider now sequents which are of theformT" + A, C. This sequent satisfies D 4 if
we can apply aright rule without aloss of completeness. The only way inwhich D 4 and
Dg., candisagreeisif thereisasequent of thisform wherewe need to apply aleft-focused
proof step before we can apply aright rule. In order for this to occur we need to have an
impermutability. Since there cannot be an impermutability between right connectives
(by the definition of Ds.,) the impermutability must be between a right connective and
aleft connective. This situation however violates D since we can use the given imper-
mutability to construct a sequent of the formT" = C where the impermutability prevents
a proof which begins with aright rule. B

