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Abstract

Programming languages are the basic tools of computer science. The design of a good

programming language is a trade-off between many factors. Perhaps the most impor-

tant and difficult trade-off is between execution efficiency and programmer efficiency.

Higher level languages reduce the amount of work the programmer has to do; however

they have, to date, been less efficient than lower level languages. That lower level lan-

guages are necessarily more efficient is a piece of folklore which is under attack – higher

level languages are constantly coming closer to the performance of the lower level lan-

guages. A consequence of this constantly closing performance gap is that the abstraction

level of programming languages is slowly but inevitably rising.

A class of programming languages which has been described as “very high level” is

declarative programming languages. Declarative programming languages have simple

formal semantics and are easier to reason about and to construct tools for than more tra-

ditional programming languages. However these languages do suffer from a number of

problems. They are weak at expressing side effects and concurrency. Side effects are

generally used to perform I/O and as a result declarative languages have been weak at

expressing I/O. Declarative languages are also weak at expressing concurrency without

compromising their semantic purity and as a result tend to be weak at expressing graph-

ical user interfaces.

Girard’s linear logic promises solutions to some of these problems – linear logic is

capable of modelling updates, it has inspired linear types which enable side effects to be

safely introduced for efficiency reasons, and linear logic can model concurrent behavior

cleanly.

This thesis focuses on the derivation of a logic programming language based on lin-

iii



ear (rather than classical) logic. Our hypothesis is that it is possible to derive a logic pro-

gramming language from linear logic. This language can be effectively implemented and

is an expressive language, allowing updates, concurrency and other idioms to be cleanly

expressed.

We investigate the systematic derivation of logic programming languages from logics

and propose a taxonomy of “litmus tests” which can determine whether a subset of a logic

can be viewed as a logic programming language. One of the tests developed is applied

in order to derive a logic programming language based on the full multiple conclusion

linear logic. The language is named Lygon.

We derive an efficient set of rules for managing resources in linear logic proofs and il-

lustrate how the selection of a goal formula can be made more deterministic using heuris-

tics derived from known properties of linear logic proofs.

Finally we investigate programming idioms in Lygon and present a range of programs

which illustrate the language’s expressiveness.

iv



Acknowledgements

I would like to thank my two supervisors – James Harland and Harald Søndergaard, for

their support and guidance. Without their fast and accurate proof-reading this thesis would

undoubtedly have the odd (additional) inconsistency or two.

The other half of the original Lygon duo, David Pym, has continued to offer com-

ments from afar. I would also like to thank David for interesting and stimulating discus-

sion.

In the last few years the Lygon team has grown at RMIT and included a number of

students whose work has advanced the cause of Lygon. In particular, the Lygon debugger

[153] is the work of Yi Xiao Xu. Yi Xiao is also the author of programs 14 and 15.

I would like to thank an anonymous referee (of a paper based on chapter 4) for point-

ing us to Hodas’ thesis and for suggesting an encoding of Lygon in Lolli.

I would like to thank the examiners of this thesis for their careful reading and useful

comments. In particular, chapter 3 benefited from the detailed critique provided.

Thank go to the Australian Research Council, the Collaborative Information Technol-

ogy Research Institute, the Centre for Intelligent Decision Systems, the Machine Intelli-

gence Project, the Department of Computer Science and the School of Graduate Studies

for financial support. Thanks also go to the administrative and system support staff at

the Department of Computer Science for providing a working environment and invisi-

bly keeping things working behind the scenes.

Last but not least, I would like to thank my family: My parents for countless small and
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Preface

Early work on the implementation of Lygon was reported on at the Australasian Com-

puter Science Conference in 1995 [149]. A (rather abridged) version of chapter 4 ap-

peared at the International Logic Programming Symposium later that year [150]. Some

preliminary work on Lygon programming was presented as a poster at that conference

[58]. Other material on which chapter 5 is based was presented at the 1996 Australasian

Computer Science Conference [152] and at the 1996 conference on Algebraic Method-

ology and Software Technology [60] where the Lygon system was demonstrated [59]. A

preliminary version of chapter 4 appeared as a technical report [148] as did an early ver-

sion of chapter 3 [151]. Section 5.1 is based on the Lygon 0.7 reference manual [146].

The reference manual also contains a section on Lygon programming.

This thesis is less than 100,000 words in length, exclusive of tables, bibliographies, foot-

notes and appendices. The work in this thesis has not been published elsewhere, except

as noted above.

Michael Winikoff

Melbourne, Australia, March 1997

xix



xx



Introduction 1

Chapter 1

Introduction

Programming languages are the basic tools of computer science. Although from a the-

oretical perspective any (reasonable) programming language is equivalent to any other,

there are many reasons why certain programming notations may be better than others.

The design of a good programming language is a trade-off between factors such as effi-

cient execution, fast compilation, programmer efficiency, tool support, safety1, portabil-

ity and mobility.

Perhaps the most important and difficult trade-off is between execution efficiency and

programmer efficiency. Higher level languages reduce the amount of work the program-

mer has to do; however they have, to date, been less efficient than lower level languages.

That lower level languages are necessarily more efficient is a piece of folklore which is

under attack – higher level languages are constantly coming closer to the performance of

the lower level languages. A consequence of this constantly closing performance gap is

that the abstraction level of programming languages is slowly but inevitably rising. Re-

search on the design, application and implementation of higher level languages yields

ideas which are eventually incorporated into mainstream programming languages2. Ad-

ditionally, higher level languages are increasingly being applied directly with promising

1Once this was defined as “can programs written in the language crash the machine?”. With the prolifer-

ation of memory protection the question becomes “does the program need to be debugged at the conceptual

level of byte arrays?”.
2It has been said that the time it takes for a programming construct to become accepted and move from

an experimental language to a mainstream one is twenty years.
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results [23, 26, 37, 72, 100, 119, 129].

A class of programming languages which has been described as “very high level” is

declarative programming languages. One definition of the class of declarative program-

ming languages proposed by Lloyd [96, 97] is that a declarative programming language

equates a program with a theory in a logic and a computation with a deduction in the

logic. A logic is defined as a formal system with

1. A proof theory,

2. A model theory,

3. A soundness theorem, and

4. (hopefully!) a completeness theorem.

There are two major sub-classes of declarative languages: functional programming

languages [74] which are based on Church’s �-calculus, and logic programming lan-

guages [134] which view computation as proof search in a logic. Declarative program-

ming languages are predicated on the assumption that a clean and simple formal seman-

tics is important and useful. Important, since it provides an explanation of the language to

programmers, serves as an implementation-neutral contract for implementors and allows

the collected knowledge of nearly a hundred years of intensive research into mathemat-

ical logic to be leveraged. A simple formal semantics is also useful in that it simplifies

proofs of correctness and aids in the construction of programming tools. It is no coinci-

dence that powerful programming tools such as partial evaluators, abstract interpreters

and declarative debuggers were first developed for (pure) declarative languages.

Declarative programming languages have a number of benefits when compared to

more traditional programming languages — they are higher level, have simple formal

semantics and are easier to reason about and to construct tools for. However they do

suffer from a number of problems. Current implementations are inefficient (although, as

noted above, the performance of these languages is constantly improving [62, 63]) and

understanding the performance of programs written in these languages can occasionally

be difficult. Declarative languages also tend to lack expressiveness in certain areas —

they are not good at expressing I/O or concurrency for example. Since graphical user
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interfaces (GUIs) generally involve concurrent behavior, expressing GUIs in declarative

languages is still a subject of research.

Girard’s linear logic [46] promises solutions to some of these problems – linear logic

is capable of modelling updates, it has inspired linear types [33, 143] which enable side

effects to be safely introduced for efficiency reasons and linear logic can model concur-

rent behavior cleanly.

This thesis focuses on the derivation of a logic programming language based on linear

logic. Our hypothesis is that:

It is possible to derive a logic programming language from linear logic. This

language can be effectively implemented and is an expressive language, al-

lowing updates, concurrency and other idioms to be cleanly expressed.

The contributions of this thesis are threefold:

1. We investigate the systematic derivation of logic programming languages from

logics. We show that logical equivalences which can be proven in a logic do not

necessarily hold in a fragment of the logic (section 3.1). The main contribution of

this part of the thesis is to propose a taxonomy of “litmus tests” which can deter-

mine whether a subset of a logic can be viewed as a logic programming language.

The tests are not specific to linear logic and could be applied to a range of logics

(e.g. modal logic, relevant logic, etc.) This work extends our understanding of the

essence of logic programming. One of the tests developed is applied in order to

derive a logic programming language based on the full multiple conclusion linear

logic. The language is named Lygon.

2. We derive an efficient set of rules for managing resources in linear logic proofs.

These rules are applicable both to the implementation of linear logic programming

languages and to linear logic theorem proving. We also illustrate how the selection

of a goal formula (when there are multiple formulae in a goal) can be made more

deterministic using heuristics derived from known properties of linear logic proofs.

3. We investigate programming idioms in Lygon and present a range of programs

which illustrate the language’s expressiveness.
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4. We compare Lygon to a number of related languages including other logic pro-

gramming languages based on linear logic and concurrent logic programming lan-

guages. We show that Lygon subsumes many of these.

The thesis begins with some background (chapter 2). We then investigate the essence

of logic programming and the systematic derivation of logic programming languages

(chapter 3). In chapter 4 we look at the implementation of Lygon and in chapter 5 we

look at the language’s applications and programming methodology. We compare Lygon

to other work in chapter 6 and conclude with a discussion and a brief look at further work

(chapter 7).
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Chapter 2

Background

2.1 Sequent Calculus

The sequent calculus is a formalism due to Gentzen [45] for representing inferences and

proofs. It is the standard notation used in the proof theoretical analysis of logic program-

ming since it distinguishes naturally between programs and goals. Additionally the se-

quent calculus rules construct a proof locally (as opposed to natural deduction [82]) and

allow short direct proofs (as opposed to Hilbert-type systems [82]). This makes the se-

quent calculus appropriate for systematic (and hence automatable) proof search.

A sequent is a construct of the form � ` � where � and� are sequences of formulae.

� is the antecedent and � is the succedent. A sequent is generally read as “if all of the

� are true then at least one of the � is true”. Note that � and � may be empty. For

example the sequent p; q ` p is provable classically and can be read as “p follows from

the assumptions p and q”.

An inference is a construct of the form

�1 : : : �n

�o
L

whereL is a name identifying the inference and the� are sequents. The inference should

be read as “The conclusion �0 is derived from the premises �1 : : : �n”. We shall see

an example shortly.
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Usually for each connective there are two rules - one for the left side and one for the

right. For example the classical logic rules for ^ are

�; F1; F2 ` �
�; F1 ^ F2 ` �

^L
� ` F1;� � ` F2;�

� ` F1 ^ F2;�
^R

Rules that deal with logical connectives (known as logical rules) generally leave most of

the formulae unchanged and have a single formula in the conclusion which has its top-

most connective removed and the resulting subformulae appropriately distributed. The

formula which is decomposed (F1 ^ F2 above) is known as the principal formula. The

subformulae of the principal formula (F1 and F2 above) are known as active or side for-

mulae. The unchanged formulae (� and � above) are the context.

In addition to the logical rules there is an axiom rule which states that any atom fol-

lows from its assumption (we use p throughout to denote an atomic formulae such as

append([1],[2],[1,2]) or q(1)):

p ` p
Ax

Note that for any logic F ` F will be derivable for any formula F . In addition to the

axiom rule there are also the structural rules and the cut rule. The structural rules apply to

any formula and (in classical logic) allow the order of formulae in a sequent to be changed

(Exchange), formulae to be deleted1 (Weakening) and additional copies of an existing

formula created (Contraction). Often it is convenient to ignore the structural rules by

treating � as being sets (for classical and intuitionistic logic) and multisets (for linear

logic).

Inference rules are given in figure 2.1 for classical logic, figure 2.2 for intuitionistic

logic and figures 2.4 and 2.5 for linear logic.

In the linear logic sequent calculus rules, the rule

!� ` F; ?�
!� `!F; ?� !R

is applicable only if every formulae in the antecedent is of the form !G and every formulae

(other than !F ) in the succedent is of the form ?G.

1When read bottom up – for a top down reading the opposite behavior occurs.
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Figure 2.1 Classical Logic (LK)

p ` p
axiom

� ` F;� �; F ` �

� ` �
cut

� ` �

�; F ` �
W-L

� ` �

� ` F;�
W-R

�; F; F ` �

�; F ` �
C-L

� ` F; F;�

� ` F;�
C-R

�; F; G ` �

�; G; F ` �
E-L

� ` F;G;�

� ` G;F;�
E-R

�; F; G ` �

�; F ^G ` �
^-L

� ` F;� � ` G;�

� ` F ^G;�
^-R

�; F ` � �; G ` �

�; F _G ` �
_-L

� ` F;G;�

� ` F _G;�
_-R

� ` F;� �0; G ` �0

�;�0; F ! G ` �;�0
!-L

�; F ` G;�

� ` F ! G;�
!-R

�; F [t=x] ` �

�; 8xF ` �
8-L

� ` F [y=x];�

� ` 8xF;�
8-R

�; F [y=x] ` �

�; 9xF ` �
9-L

� ` F [t=x];�

� ` 9xF;�
9-R

� ` F;�

�;:F ` �
:-L

�; F ` �

� ` :F;�
:-R

The rules 8-R and 9-L have the side condition that y is not free in �, F or �.
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Figure 2.2 Intuitionistic Logic (LJ)

p ` p
axiom

� ` F �; F ` G

� ` G
cut

� ` F 0

�; F ` F 0
W-L

� `

� ` F
W-R

�; F; F ` F 0

�; F ` F 0
C-L

�; F; G ` F 0

�; G; F ` F 0
E-L

�; F; G ` F

�; F ^G ` F
^-L

� ` F � ` G

� ` F ^G
^-R

�; F ` F �; G ` F

�; F _G ` F
_-L

� ` Fi
� ` F1 _ F2

_-R

� ` F �; G ` F

�; F ! G ` F
!-L

�; F ` G

� ` F ! G
!-R

�; F 0[t=x] ` F

�; 8xF 0 ` F
8-L

� ` F [y=x]

� ` 8xF
8-R

�; F 0[y=x] ` F

�; 9xF 0 ` F
9-L

� ` F [t=x]

� ` 9xF
9-R

� ` F

�;:F `
:-L

�; F `

� ` :F
:-R

The rules 8-R and 9-L have the side condition that y is not free in �, F or �.
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Figure 2.3 Multiple Conclusioned Propositional Intuitionistic Sequent Calculus (LJM)
� and � are multisets.

�; p ` p;�
Ax

�;? ` �
?� L

�; F; G ` �
�; F ^G ` �

^ � L
� ` F;� � ` G;�

� ` F ^G;�
^ � R

�; F ` � �; G ` �
�; F _G;� ` �

_ � L
� ` F;G;�
� ` F _G;�

_ � R

�; F ! G ` F �; G ` �
�; F ! G ` �

! �L
�; F ` G

� ` F ! G;�
! �R

[41] presents a group of rules which replace! �L:

�; G; F ` �
�; F ! G;F ` �

! �L1

�; E ! (H ! G) ` �

�; (E ^H)! G ` �
! �L2

�; E ! G;H ! G ` �

�; (E _H)! G ` �
! �L3

�; H ! G ` E ! H �; G ` �

�; (E ! H)! G ` �
! �L4

A proof is a tree where the root is the sequent proven and the leaves are instances

of the axiom rule. As an example consider proving that in classical logic B ! ((B !

A)! A) is always true

B ` B
Ax

A ` A
Ax

B; (B ! A) ` A
! L

B ` (B ! A)! A
! R

` B ! ((B ! A)! A)
! R

Note that when used for logic programming the inference rules are applied bottom-

up.2 We apply the inference rules to go from conclusions to premises. We are given a

query and seek to prove or disprove it.

We use left (right) to refer to all rules (both structural and logical) which operate on

2Since proof trees are upside down to a computer scientist “bottom-up” here corresponds to what logic

programmers normally call “top-down”, i.e. the standard Prolog mechanism.
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Figure 2.4 Linear Logic (LL)

p ` p
axiom

� ` F;� �0; F ` �0

�;�0 ` �;�0
cut

�; F;G;�0 ` �

�; G; F;�0 ` �
E-L

� ` �; F;G;�0

� ` �; G; F;�0
E-R

� ` �

�;1 ` �
1-L

` 1
1-R

? `
?-L

� ` �

� ` ?;�
?-R

� ` >;�
>-R

�;0 ` �
0-L

� ` F;�

�; F? ` �
�?-L

�; F ` �

� ` F?;�
�?-R

�; F;G ` �

�; F 
G ` �

-L

� ` F;� �0 ` G;�0

�;�0 ` F 
G;�;�0

-R

�; F ` �

�; F NG ` �

�; G ` �

�; F NG ` �
N-L

� ` F;� � ` G;�

� ` F NG;�
N-R

�; F ` � �; G ` �

�; F �G ` �
�-L

� ` F;�

� ` F �G;�

� ` G;�

� ` F �G;�
�-R

�; F ` � �0; G ` �0

�;�0; F OG ` �;�0
O-L

� ` F;G;�

� ` F OG;�
O-R

� ` F;� �0; G ` �0

�;�0; F ( G ` �;�0
(-L

�; F ` G;�

� ` F ( G;�
(-R

�; F ` �

�; !F ` �
!-L

!� ` F; ?�

!� `!F; ?�
!-R

!�; F `?�

!�; ?F `?�
?-L

� ` F;�

� `?F;�
?-R

� ` �

�; !F ` �
W !-L

� ` �

� `?F;�
W ?-R

�; !F; !F ` �

�; !F ` �
C!-L

� `?F; ?F;�

� `?F;�
C?-R

�; F [t=x] ` �

�;8x : F ` �
8-L

� ` F [y=x];�

� ` 8x : F;�
8-R

�; F [y=x] ` �

�; 9x : F ` �
9-L

� ` F [t=x];�

� ` 9x : F;�
9-R

where y is not free in �, �.
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Figure 2.5 Intuitionistic Linear Logic (ILL)

p ` p
axiom

� ` F �0; F ` G

�;�0 ` G
cut

�; F;G;�0 ` F

�; G; F;�0 ` F
E-L

� ` F

�;1 ` F
1-L

` 1
1-R

? `
?-L

� `

� ` ?
?-R

� ` >
>-R

�;0 ` �
0-L

� ` F

�; F? `
�?-L

�; F `

� ` F?
�?-R

�; F;G ` F

�; F 
G ` F

-L

� ` F �0 ` G

�;�0 ` F 
G

-R

�; F ` F

�; F NG ` F

�; G ` F

�; F NG ` F
N-L

� ` F � ` G

� ` F NG
N-R

�; F ` F �; G ` F

�; F �G ` F
�-L

� ` F

� ` F �G

� ` G

� ` F �G
�-R

�; F ` F �; G `

�; F OG ` F

�; F ` �; G ` F

�; F OG ` F
O-L

� ` F �0; G ` F

�;�0; F ( G ` F
(-L

�; F ` G

� ` F ( G
(-R

�; F ` F

�; !F ` F
!-L

!� ` F

!� `!F
!-R

!�; F `?F

!�; ?F `?F
?-L

� ` F

� `?F
?-R

� ` F

�; !F ` F
W !-L

� `

� `?F
W ?-R

�; !F; !F ` F

�; !F ` F
C!-L

�; F [t=x] ` F

�;8x : F ` F
8-L

� ` F [y=x]

� ` 8x : F
8-R

�; F [y=x] ` F

�; 9x : F ` F
9-L

� ` F [t=x]

� ` 9x : F
9-R

where y is not free in �, �.
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formulae on the left (right) of the turnstile (`). The rules Ax and Cut are neither left nor

right.

A sequent calculus is single conclusioned if there is at most a single formula on the

right of the turnstile, otherwise it is multiple conclusioned. Single conclusioned calculi

do not possess the right contraction and right exchange rules. One of the important early

results in the area is that limiting the standard sequent calculus for classical logic to a

single conclusion gives a sequent calculus for intuitionistic logic [45]. Note that there

exists a multiple conclusioned sequent calculus for intuitionistic logic (given in figure

2.3).

A sequent calculus is one sided if all succedents (or all antecedents) are empty. This

can be achieved by shifting formulae across the turnstile by negating them and then using

de Morgan rules to push negations inwards. Linear logic was first presented [46] as a one

sided system since there are half as many rules involved.

For example, to construct a one sided sequent calculus for classical logic we can re-

place sequents � ` � with sequents ` :�;� and push negations inwards. The axiom

rule becomes

` p;:p Ax

In figure 2.6 a one sided presentation of the rules of linear logic is given. The sys-

tem (L) also introduces a non-linear region (�) which is duplicated by the 
 rule. This

makes the
 rule permutable with contraction (see section 2.4). Additionally, the axiom

rule encodes applications of weakening. This system is used as a stepping stone in the

completeness proof of the deterministic resource management rules presented in chapter

4. Showing the equivalence of this system to the standard rules in figure 2.4 is straight-

forward. The sequent � : � is provable in L iff the sequent ` �; ?� has an LL proof.

Two formulae, A and B, are logically equivalent if both A ` B and B ` A are

provable. For example, in classical logic A! B is logically equivalent to (:A) _ B

A ` A
Ax

B ` B
Ax

A; (A! B) ` B
! �L

A! B ` :A;B
: � R

A! B ` (:A) _B
_ �R

A ` A
Ax

A ` B;A
W � R

:A;A ` B
: � L B ` B

Ax

B;A ` B
W � L

(:A) _ B;A ` B
_ � L

(:A) _B ` A! B
! �R
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Figure 2.6 One Sided Linear Logic (L)

� : p; p?
Ax

� : 1 1

� : >;�
>

� : �
� : ?;�

?

� : F;� � : G;�
� : F 
G;�;�



� : F;� � : G;�
� : F NG;�

N

� : F;�

� : F �G;�
�1

� : F;G;�
� : F OG;�

O

� : G;�
� : F �G;�

�2
� : F
� :!F

!

F; � : �
� :?F;�

?
F; � : F;�
F; � : �

?D

� : F [t=x];�

� : 9xF;� 9
� : F [y=x];�

� : 8xF;� 8

where y is not free in �;�.
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Figure 2.7 The Cut Rule
�; F ` � � ` F;�

� ` �
Cut

Cut

The cut rule (figure 2.73) occupies a special place in a number of respects. It is a structural

rule in that can be applied to any formula. It is neither a left nor a right rule. Addition-

ally, and most importantly, it is the only rule (in the logics which we will be considering)

which does not satisfy the sub-formula property. The sub-formula property is satisfied

by a sequent calculus rule if all formulae in the premis(es) of the rule are subformulae

of formulae in the conclusion. The absence of this property for the cut rule is a severe

impediment to bottom-up proof search since it requires that we “guess” the formula F .

The property of cut elimination states that if there exists a proof in some system with

conclusion� ` �which makes use of the cut rule then there exists another proof with the

same conclusion which does not make use of the cut rule. The cut elimination theorem

is also known as Gentzen’s Hauptsatz (main theorem) [45]. The cut elimination property

has been shown to hold for all of the logics we shall be considering. That cut elimination

holds is essential for bottom up proof search to be practical.

From cut elimination we can derive a number of useful properties. For example,

modus ponens as a meta-level inference step can be shown to hold using cut. If we have

proofs of ` A and ` A! B then we can derive ` B:

....
` A

....
` A! B

A ` A B ` B
A;A! B ` B

! �L

A ` B
Cut

` B Cut

For more details on the sequent calculus we refer the reader to [81].

3Note that the rule given in figure 2.7 corresponds to an additive presentation of the cut rule. In linear

logic it is more natural to consider a multiplicative presentation where the formulae in the conclusion are

split between the two premises. In classical and intuitionistic logic these two presentations are equivalent.
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2.2 Intuitionistic Logic

Intuitionistic logic was developed early this century. It shares its syntax with classical

logic but differs semantically in that it rejects the law of the excluded middle which states

that ` A _ :A is true, i.e., that predicates must be either true or false. A number of

consequences follow, for example although A ! ::A, it is not the case that ::A !

A, thus A and ::A are distinct. For our purposes it is sufficient to know that it can

be specified by taking the standard sequent calculus for classical logic and limiting it to

single conclusions. For more details we refer the reader to [81].

2.3 Linear Logic

Linear logic was introduced in a seminal 1987 paper by Girard [46] and has since inspired

much work in the computer science and mathematical communities.

Whereas classical logic can be said to be based on the intuitive notion of truth, linear

logic is intuitively based on the notion of resources. A predicate in linear logic is a re-

source. Resources can neither be duplicated nor discarded. Thus for example the sequent

dollar; dollar ` dollar which is provable classically does not hold in linear logic.

Linear logic provides connectives that allow controlled duplication and deletion of

resources. This accounts in part for linear logic’s richness and versatility.

As an example consider the familiar resource of pizza slices. Let us use cap to repre-

sent the resource of a single slice of capricciosa pizza and let veg represent a single slice

of vegetarian pizza.

Resources can be supplied and consumed. These dual notions are entirely symmet-

rical in linear logic. If cap represents the consumption of a slice of pizza then its linear

negation cap? (“neg cap” or “perp4 cap”) denotes the act of supplying a slice of pizza.

Due to the linearity of resources the familiar conjunction and disjunction are split into

two connectives each. There are two conjunctions: a
 b (“a cross b” or sometimes due

to the visual appearance of the connective “a pizza b”) splits the resources between the

sub-proofs of a and b. aN b (“a with b”) uses all of the resources to prove a and all of the

4from “perpendicular” - at right angles
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resources to prove b. There are also two disjunctions: a�b (“a or b”) has a fairly standard

intuitive behaviour – it is provable if either a or b are. aO b (“a par b” or “a tensum b”)

is the dual of 
. It places both a and b into the context. If one thinks as 
 as enabling

multiple consumptions by splitting the resources between a and b thenO enables multiple

supplies.

Linear logic has four logical constants:

>: Is a version of truth which is provable in any context. It is the unit ofN (i.e.,>NF =

F )

1: Is provable, but only in an empty context. It is the unit of 
.

?: Is the unit of O. It cannot be proved, but can be weakened away.

0: Is the unit of �.

The formula

(veg
 veg
 veg
 veg)� (veg
 veg
 veg)

expresses the consumption of either three or four slices of vegetarian pizza. Using the

constant 1 this could also be written as

veg
 veg
 veg
 (veg� 1)

The constant > can consume any amount of resources:

` >; veg; cap?; cap
>

The two exponentials “!” and “?” represent different notions of infinite resources. “?”

represents a possibility for endless resources. ?veg (“why not veg”) can be interpreted

as someone who is content with any number of vegetarian pizzas including zero. On the

other hand !veg (“bang veg” or “of course veg”) represents someone who is only happy if

given an infinite number of vegetarian pizzas. Conversely, ?(veg?) is a restaurant capa-

ble of producing any number of vegetarian pizzas and !(cap?) is a strange establishment

that insists on feeding its customers with an infinite amount of capricciosa pizza!
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A certain very hungry person is happy only if given an infinite amount of pizzas but

is not fussy about which type they are. We can represent this person using the following

formula:

!(veg� cap)

The following formula represents an infinitary supply of vegetarian pizzas.

?(veg?)

Using the rules in figure 2.4 we can prove that an infinite supply of vegetarian pizzas

satisfies very hungry:

veg ` veg Ax

` veg?; veg
�? � R

`?(veg?); veg
?� R

`?(veg?); veg� cap
�� R

`?(veg?); !(veg� cap)
!� R

The quantifiers are written as they are in classical logic and behave identically.

Linear logic possesses the following de Morgan rules:

(F1 
 F2)
? � (F1)

?
O (F2)

?

(F1 O F2)
? � (F1)

? 
 (F2)
?

(F1 � F2)
? � (F1)

?
N (F2)

?

(F1 N F2)
? � (F1)

? � (F2)
?

(!F )? � ?(F )?

(?F )? � !(F )?

(9xF )? � 8x(F )?

(8xF )? � 9x(F )?

(1)? � ?

(?)? � 1

(0)? � >

(>)? � 0

Good tutorial introductions to linear logic and its applications to computer science

can be found in [3, 4, 123, 124].
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2.4 Permutabilities

Permutabilities [83] play an important role in the proof theoretical analysis of logic pro-

gramming languages. We say that (e.g.) 
-R permutes down over N-L if whenever a

proof contains an occurrence of 
-R immediately above5 an occurrence of N-L we can

swap the order and retain a valid proof. For example in any context, the inference

....
�; F1 ` �; F3

....
�0 ` �0; F4

�;�0; F1 ` �;�0; F3 
 F4

� R

�;�0; F1 N F2 ` �;�0; F3 
 F4
N� L

....

can be replaced by

....
�; F1 ` �; F3

�; F1 N F2 ` �; F3
N� L

....
�0 ` �0; F4

�;�0; F1 N F2 ` �;�
0; F3 
 F4


�R
....

So,
-R does indeed permute down overN-L. Alternatively,N-L permutes up over
-R.

In the case where the two rules in question are both right or both left rules we need

to modify the definition slightly. Where the upper rule operates on a formula which is

introduced by the bottom rule permuting the rules is impossible. We modify the definition

to exclude this situation when testing for permutability. For example in the following

proof we cannot exchange the order of
�R and��R; however they do permute over

each other when � is not in a sub-formula of 
.

F ` F
H ` H

H ` G�H
�R

F;H ` F 
 (G�H)

R

5By “above” we mean “closer to the leaves”
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As a negative example consider 
-R and N-R. The following proof is derivable

G ` > >
F ` F Ax

F ` F;? ?

F;G ` F;?
>

� R

F ` > >
G ` G Ax

G ` G;? ?

F;G ` G;?
>

�R

F;G ` F NG;?
>
N�R

....

Consider now a proof of the same sequent which begins with an application of 
-R. It

is clear that the formula F N G will have to go to the branch containing ? since none

of ` ? , F ` ? , G ` ? or F;G ` ? are provable. Unfortunately, neither are any of

` F NG;? or F ` F NG;? or F;G ` F NG;?. Thus there is no proof of the sequent

which begins by applying 
-R and hence 
-R does not permute down over N-R.

A rule is reversible (the term invertible is also sometimes used) if it permutes down

over all other rules and relatively reversible if it permutes down over all the rules that

can occur in the fragment being considered, but not necessarily over all of the rules. For

example, in linear logic the right rule forO is reversible. The right rule for� is relatively

reversible if the proof cannot contain N-R (or the equivalent �-L).

A connective is asynchronous [6] if the corresponding right rule is reversible and is

relatively asynchronous if the corresponding right rule is relatively reversible. Non asyn-

chronous connectives are referred to as synchronous. A connective occurring on the left

of the turnstile is synchronous (respectively, asynchronous) iff it is asynchronous (respec-

tively, synchronous) on the right of the turnstile.

If there is a proof of a sequent containing a formula whose topmost connective is

asynchronous then there is a proof of the sequent where that formula is the active formula.

As an example, consider the proof (on the left) of (a(1)? O ?); 9xa(x). Since O is

asynchronous there exists a proof (on the right) where the first inference applied is O.

` a(1)?; a(1)
Ax

` a(1)?;?; a(1)
?

` a(1)? O?; a(1)
O

` a(1)? O?; 9xa(x)
9

` a(1)?; a(1)
Ax

` a(1)?; 9xa(x)
9

` a(1)?;?; 9xa(x)
?

` a(1)? O?; 9xa(x)
O



20 CHAPTER 2. BACKGROUND

In linear logic, the connectives > , ? , O6, N , ? and 8 are asynchronous and the

connectives 1 , 0 , 
 , � , ! and 9 are synchronous.

In [6] Andreoli observes that if there is a proof which begins by applying a synchronous

rule and a side formula is itself synchronous then there exists a proof of the resulting se-

quent if and only if there is a proof which begins by applying a rule to the synchronous

side formula. This property is known as focusing. Note that an atom on the left of the

turnstile can be considered to be synchronous with respect to focusing.

The permutability properties for classical and intuitionistic logic below are from Kleene

[83]. The permutability properties for linear logic are from Lincoln [94]. Most of the

pairs of inference rules permute for classical and intuitionistic logic. The exceptions are

outlined below.

Classical Logic

The only pairs of rules which do not commute involve 9 and 8.

1. 8 � L above 8 �R : 8xp(x) ` 8xp(x)

2. 8 � L above 9 � L : 8xp(x); 9x:p(x) `

3. 9 � R above 9 � L : 9xp(x) ` 9xp(x)

4. 9 � R above 8 � R : ` 9xp(x); 8x:p(x)

5. 9 � R above _ � L : p(a) _ p(b) ` 9xp(x)

6. 8 � L above _ � L : 8:p(x); p(1) _ p(2) `

These can be summarised in a table where a number means that the rule in that column

cannot be permuted below the rule of the row. For example, in the following table, the

occurrence of 5 indicates that 9 �R cannot be permuted down past _ � L.

6And(
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8 � L 9 � R

_ � L 6 5

8 � R 1 4

9 � L 2 3

Rules which do not appear as a column heading can always be permuted down. Rules

which do not appear as row headings can always be permuted up. Rules which do not

appear at all can be permuted arbitrarily.

Uniformity requires that right rules can be permuted down past left rules. Thus for

the purposes of uniformity the problematic cases are those where a right rule above a left

rule does not permute. For classical logic only the third and fifth cases above present a

problem to uniformity. Intuitively, we can conclude that a logic programming language

based on the application of uniformity to classical logic cannot allow the application of

both 9 � R and 9 � L or of both 9 � R and _ � L.

Intuitionistic Logic

The following pairs of rules do not commute:

1. 8 � L above 8 � R : 8xp(x) ` 8xp(x)

2. 8 � L above 9 � L : 8xp(x); 9x:p(x) `

3. 9 � R above 9 � L : 9xp(x) ` 9xp(x)

4. ! �L above! �R : p! :p ` p! q

5. : � L above! �R : :p ` p! q

6. ! �L above : �R : p! :p ` :p

7. : � L above : � R : :p ` :(p ^ p)

8. ! �L above _ � L : p _ q; p! q ` q
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9. _ �R above _ � L : p _ q ` p _ q

10. : � L above _ � L : p _ q;:p ` q

11. 9 � R above _ � L : p(a) _ p(b) ` 9xp(x)

12. 8 � L above _ � L : 8:p(x); p(1) _ p(2) `

These can be summarised in a table where a number means that the rule in that column

cannot be permuted below the rule of the row. Note that since intuitionistic logic is single

conclusioned it is not possible to have two consecutive right rules where the upper rule

does not operate on a side formula of the lower rule. Hence all pairs of right rules are

automatically not candidates for permutability and we mark them as N/A.

_ � R 8 � L 9 � R ! �L : � L

_ � L 9 12 11 8 10

8 �R N/A 1 N/A

9 � L 2 3

! �R N/A N/A 4 5

: � R N/A N/A 6 7

Rules which do not appear as a column heading can always be permuted down. Rules

which do not appear as row headings can always be permuted up. Rules which do not

appear at all can be permuted arbitrarily.

Linear Logic

Linear logic has more impermutabilities than either classical or intuitionistic logic. In the

following table (taken from Lincoln’s thesis [94]) a number means that the right rule of

the connective in that column cannot be permuted below the rule of the row. For example,

the entry 1 indicates that 
 does not permute down past O:

` A;A?
Ax

` B;B?
Ax

` A;B;A? 
 B?



` AOB;A? 
 B?
O

` AOB;A? ` B?

` AOB;A? 
B?
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The table only summarises right rules (and omits 1 and> since they have no premises).

To obtain the permutability properties for left rules use the de Morgan dual. For exam-

ple, the leftO rule permutability properties are identical to the right
 rule. Rules which

do not appear as a column heading can always be permuted down. Rules which do not

appear as row headings can always be permuted up. Rules which do not appear at all can

be permuted arbitrarily. The !-R rule requires that there be no linear formulae and thus

it does not permute with any rule not involving ? since the presence of a formula with a

topmost connective other than ? prevents the ! rule from being applicable. For example,

the sequent ` (?p)N (?q); !1 is provable but the ! rule is not applicable before theN rule.


 � ?W ? ! 9


 0

O 1 0

N 2 3 4 5 0 6

� 0

?C 7

! 8

? 0

8 0 9

9 0

0 various examples

1 ` (AO B); (A? 
B?)

2 ` (AN B); (?
>); A?; B?

3 ` (AN B); (A? �B?)

4 ` (1N A); ?A?

5 ` ((!A)N A); ?A?

6 ` (A(t)? N A(u)?); 9x:A(x)

7 `?A; (A? 
 A?)

8 `!(A? �B); ?A

9 ` 8y:(A(y)�B); 9x:A(x)?

2.5 Linear Logic Programming Languages

A linear logic programming language can be defined by giving a set of allowed pro-

gram and goal formulae. Grammars defining the classes of goal and program formulae

for a number of linear logic programming languages can be found in figure 2.8.

The semantics of a linear logic programming language can be obtained using the stan-

dard linear logic sequent calculus inference rules. However, a more deterministic set of

rules is generally possible. For example, if a language requires that all program formulae

are of the form !8x(G ( A) then the following rule is a sound and complete replacement
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Figure 2.8 Linear Logic Programming Languages

Lolli [70]
D ::= > j A j D ND j G( D j G ) D j 8x:D

G ::= > j A j G N G j D( G j D ) 7G j 8x:G j G � G j 1 j G 
 G j!G j 9xG

ACL [85]
D ::=!8x(G ( Ap)

G ::= ? j > j Am j?Am j Ap j G O G j G N G j 8xG j R

R ::= 9x(A?

m 
 : : : 
A?

m 
 G) j R �R

LO [10]
D ::=!8x(G ( A1 O : : :OAn)

G ::= A j > j G N G j G O G

Forum [109]
D ::= G

G ::= A j G O G j G N G j G ( G j G ) G j > j ? j 8xG

LC [140]
D ::=!8x(G ( A1 O : : :OAn)

G ::= A j 1�? j > j G O G j G � G j 9xG

Lygon [122]

D ::= A j 1 j ? j D ND j D 
D j G ( A j G? j 8xD j!D j D OD

G ::= A j 1 j ? j > j G 
 G j G � G j G O G j G N G j D( G j D? j 8xG j 9xG j!G j?G
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for the axiom and left rules:

�; !8x(G( A0) ` G[t=x];�

�; !8x(G( A0) ` A;�
Prog

where A0[t=x] = A.

A more detailed introduction to the individual languages, as well as a comparison

between them, can be found in section 6.1. A more detailed introduction to Lygon as

a programming language can be found in section 5.1. Note that the grammar given in

figure 2.8 for Lygon is the one developed in [122]. In section 3.11 we derive a different

version of the language (which we called Lygon2 ) which we propose as a replacement

for the earlier language design.
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Chapter 3

Deriving Logic Programming

Languages

This chapter is concerned with the derivation of logic programming languages from log-

ics. The basic motivation is one of language design: given a logic, how should we go

about creating a logic programming language based upon the logic? In investigating the

question we need to take a close look at what logic programming is and how logic pro-

gramming differs from, say, theorem proving, to which it is closely related.

In order to derive logic programming languages we need to have a notion of a charac-

teriser. A characteriser is simply a test that tells us whether a set of permissible program

and goal formulae constitutes a logic programming language. The derivation of logic

programming languages can be reduced to the search for properties of proofs which can

be used as characterisers and which capture the essence of logic programming. In this

chapter we investigate a number of properties of proofs which capture various intuitions

regarding the essence of logic programming.

Consider as an example logic programming in classical logic. It is well known that

the Horn clause fragment of the logic forms a logic programming language (namely pure

Prolog [134]). On the other hand, allowing arbitrary classical logic formulae as goals

and programs does not result in a logic programming language since the resulting proof

system lacks a number of desirable properties associated with logic programming. One

such property is the ability of the system to return appropriate values for variables. When
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we ask a goal such asplus(1,3,X)we expect the system to reply withX=4 rather than

with yes.

The ability of the system to do this relies on the property that a query of the form 9xF

is provable if and only if there is a term t such thatF [t=x] is provable. This property holds

for the Horn clause logic fragment but not for the full logic. For example, the goal 9xp(x)

is provable from the program p(a) _ p(b); however, neither p(a) nor p(b) are provable

from the program.

One property which seems essential to our intuition of what constitutes logic pro-

gramming is goal directedness. Uniformity [112] is a formalisation of the intuitive no-

tion of goal-directedness. The sequent � ` � is seen as comprising a program � and a

goal �. A proof is goal directed if its “shape” – that is the choice of rule to be applied at

each step in the derivation of a proof – is determined by the goal and not by the program.

DEFINITION 1 (UNIFORMITY [112])

A proof in the intuitionistic sequent calculus is uniform if each occurrence of a sequent

whose succedent contains a non-atomic formula is the conclusion of the inference rule

which introduces its [the non-atomic formula’s] top-level connective.

For example, a proof of the sequent � ` a ^ c is non-uniform if it begins with a rule

other than ^�R. The proof is uniform if it begins with ^�R and if all sequents in the

proof satisfy the uniformity condition. The first of the following proofs (in intuitionistic

logic) is uniform, but the second is not:

a ` a
c; a ` a

W

c; a; b! a ` a
W

b ` b
b ` b; a

W

c; b ` b; a
W

a ` a
b; a ` a

W

c; b; a ` a
W

c; b; b! a ` a
! �L

c; a _ b; b! a ` a
_ � L

c ` c
c; b! a ` c

W

c; a _ b; b! a ` c W

c; a _ b; b! a ` a ^ c
^ � R

a ` a
a; b! a ` a

W

c; a; b! a ` a
W

c ` c
c; b! a ` c

W

c; a; b! a ` c
W

c; a; b! a ` a ^ c
^ �R

b ` b
b ` a; b

W

c; b ` a; b
W

a ` a
b; a ` a

W

c; b; a ` a
W

c; b; b! a ` a
! �L

c ` c
c; b! a ` c

W

c; b; b! a ` c
W

c; b; b! a ` a ^ c
^ �R

c; a _ b; b! a ` a ^ c
_ � L
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Miller et al. [112] define an idealised abstract interpreter `O which corresponds to the

operational viewpoint. This is linked to logic through the definition of a uniform proof.

They then define an abstract logic programming language as a triple < D;G;`> such

that for any P a finite subset of D, and for any G in G, P ` G if and only if P �! G

has a uniform proof.

Unfortunately uniformity is defined in the context of single conclusioned sequent cal-

culi systems. This is a problem since we are interested in a general criteria applicable to

a range of both single and multiple conclusion logics including relevant logic [24], tem-

poral and modal logics [118] and linear logic [6, 10, 70, 85, 109, 140, 147].

This chapter continues the investigation into the derivation of logic programming lan-

guages. We define a number of formal characterisers (including uniformity) and explore

the relationships amongst them. We begin with single conclusion logics and then gener-

alise to the multiple conclusion setting.

Uniformity turns out to subsume most of the characterisers we investigate which is

evidence that it is the right direction. We find however, that it is necessary to introduce a

mechanism by which we can determine whether a proof is being guided by atomic goals.

This mechanism is crucial to the proper generalisation of uniformity to multiple conclu-

sion logics which yields two versions of uniformity. We propose these and an extended

version of the single conclusion case as characterisers for the derivation of logic program-

ming languages.

We begin by discussing the problems with uniformity and the pitfalls that arise in

the use of logical equivalence (section 3.1). After discussing some intuitions about the

essence of logic programming (section 3.2) we examine the single conclusion case (sec-

tion 3.3) and look at some examples (section 3.4). We examine the multiple conclusion

case (section 3.5) and look at some more examples (section 3.6). In particular, we look

at Forum (section 3.7) and Lygon (section 3.8) and how they are judged by the various

criteria presented. After applying our criteria to classical logic (section 3.9) we compare

our work with other related work in section 3.10. We then re-derive the language Lygon

in light of our results (section 3.11) and finish with a (single) conclusion and a brief look

at further work.
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Two items of terminology we shall use are open nodes and proof steps. Both of these

relate to the process of proof construction. The process of proof search (as used in logic

programming) begins with a single sequent at the root of the proof and progressively ex-

pands the proof upwards by applying inferences. The first inference applied has the root

of the tree as its conclusion. At each step of the proof construction process there are a

number of sequents which still need to be proved; these are open nodes. For example, in

the following incomplete (intuitionistic logic) proof the sequents p ` p _ q and p; p ` p

are both open nodes.

p ` p
Ax

p ` p _ q

p ` p ^ (p _ q)
^ � R

` p! (p ^ (p _ q))
! �R

p; p ` p
p ^ p ` p

^ � L

` (p ^ p)! p
! �R

` (p! (p ^ (p _ q))) ^ ((p ^ p)! p)
^ � R

A proof step is the extension of an incomplete proof by the consecutive application of one

or more inference rules. By “consecutive” we mean that the conclusion of an inference

step is a premise of an earlier inference in the proof step. Intuitively a proof step extends

a single open node with a number of inferences.

3.1 Problems with Uniformity

Uniformity is the main existing method for characterising logic programming languages.

Unfortunately, it suffers from a number of problems.

Firstly, uniformity is only defined for single conclusion sequent systems1. A straight-

forward extension to a multiple conclusion setting is fairly obvious [55, 106, 109, 140]

but it requires that all connectives occurring in goals permute over each other – a restric-

tion which we shall see is unnecessary.

Another problem with a simple generalisation of uniformity to multiple conclusion

sequent systems involves one sided presentations. Most2 multiple conclusion presenta-

tions of a logic can be simply transformed into a one sided presentation. The problem

1From [112]: “A C-proof in which each sequent occurrence has a singleton set for its succedent is also

called an I-proof”. And later: “A uniform proof is an I-proof in which : : : ”
2Sufficient de Morgan rules are required.
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with one sided presentations is that they blur the distinction between programs and goals

and thus cause problems with the application of uniformity. For example consider the one

sided presentation derived by replacing the sequent � ` � with the sequent �; (:�) `

using de Morgan rules to push negation inwards to atoms and adding the following rule

p;:p ` Ax0

Note that this rule is derivable:

p ` p
Ax

p;:p `
: � L

Since proofs in the given one-sided presentation do not contain any goals, all proofs are

trivially uniform! As a direct consequence, the entire logic is trivially considered to be

a logic programming language by uniformity.

Unless we are careful with transforming the presentation of the logic it becomes easy

to conclude that uniformity considers the full logic of most multiple conclusion logics

(including classical and linear) to be a logic programming language.

The conclusion that may be drawn from this is that only “sensible” presentations of

logics should be considered. At a minimum, a sensible presentation requires that the no-

tion of a goal and a program be present.

Note that having an empty program and a number of goals is a perfectly reasonable

special case in a two sided presentation which we should expect a characteriser to handle.

This is a special case of the second problem with uniformity – it is reliant on a partic-

ular formulation of intuitionistic logic. This is a general problem – if we judge whether

a fragment of a logic constitutes a logic programming language by looking at proofs and

seeing if they have a certain property (such as uniformity) then changes in the system

which is used to construct these proofs can effect the properties of the proofs. As a con-

sequence, changing the presentation of a logic can change the class of formulae which

are considered to be a logic programming language.

For example, in intuitionistic logic, program formulae of the form F1_F2 are gener-

ally not permitted since the sequent p_ q ` p_ q is provable but there is no proof which

concludes with an application of the standard _ � R rule. However, if we replace the
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standard _ � R rule with the rule:

� ` F1; F2;�
� ` F1 _ F2;�

_ � R

and modify the rest of the calculus accordingly (see [41]) then the sequent has a uniform

proof and programs can contain top-level disjunctions.

Thirdly, uniformity does not constrain the search for the proof of a sequent with

(only) atomic goals. This is a problem in that a uniform proof search mechanism must

apply the appropriate right rule while the goal is compound but can do almost anything

once the goal becomes atomic. An example where this can lead to undesirable behaviour

is in the proof of q;:q ` 9xp(x). This sequent is provable; however the proof weakens

away p(x) – so the goal is irrelevant to the proof. As we shall see this problem needs

to be fixed in order for one of the two multiple conclusion generalisations of uniformity

to work.

Finally, uniformity possesses a loophole. This allows designs to satisfy the letter of

the rule but violate its spirit. We devote the rest of this section to this problem. It is worth

stressing that this problem lies in the application of uniformity and not in uniformity

itself.

Abusing Logical Equivalence

Recall that two formulae F and G are logically equivalent if each implies the other, that

is, if we can prove both F ` G and G ` F . Given that F and G are logically equivalent

we can use the cut rule to replace F with G in a derivation and vice versa:
....

F ` G

....
� ` �; F

� ` �; G
Cut

....

....
G ` F

....
� ` �; G

� ` �; F
Cut

....

Since the cut rule is eliminable one concludes that F and G can be freely substituted for

one another.

What has this to do with uniformity? The careless use of logical equivalence argu-

ments allows for a loophole in the characterisation of logic programming languages. We
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can (ab)use logical equivalence to design languages which are uniform in letter but which

violate a number of properties generally associated with goal directed proofs and logic

programming.

Note that, as an extreme case, the application of standard linear logical equivalences

enables one to encode the entirety of linear logic into a subset that can be shown to be

uniform [6, 109]. Since full linear logic is not uniform this suggests that the use of logical

equivalences to extend a logic programming language might not always be appropriate.

To see that full linear logic is not uniform consider the sequent p�q ` p�q. The sequent

is provable; however the only possible proof uses a left rule when the goal is non-atomic

and thus the proof is not uniform. Hence limiting ourselves to considering only uniform

proofs is not complete for the full linear logic.

The argument to watch out for is “these two formulae are logically equivalent and

hence can replace each other”. The point is that this only holds in the full logic. If the

proof system we are working within is a limited version of the full one, then it may be

incapable of proving that F ` G and hence incapable of performing the replacement.

Thus in the context of uniformity the argument above is not valid if we can not derive

F ` G in a uniform way. Indeed, the proof system may be able to differentiate between

“logically equivalent” F and G.

For example, it is easy to show that the two formulae pN q and (p? � q?)( ? are

logically equivalent. However the equivalence proof is not goal directed, and hence we

cannot replace the first by the second in a goal directed proof. Given the program pN q

only the first has a proof which we would intuitively consider to be “goal directed”:

p ` p Ax

pN q ` p
N� L

q ` q Ax

pN q ` q
N� L

pN q ` pN q
N� R

p ` p
Ax

pN q ` p
N� L

pN q; p? `
�? � L

q ` q
Ax

pN q ` q
N� L

pN q; q? `
�? � L

pN q; p? � q? `
� � L

pN q; p? � q? ` ?
? � R

pN q ` (p? � q?)( ?
( �R

The second proof is uniform, but it is clearly less “goal directed” than the first. This

indicates that uniformity is not constraining enough. Another, more compelling, example
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is the logical equivalence of 9xp(x) and (8x(p(x)?))
?

p(y) ` p(y)
Ax

p(y); p(y)? `
�? � L

p(y); 8x(p(x)?) `
8 � L

9xp(x); 8x(p(x)?) `
9 � L

9xp(x) ` (8x(p(x)?))
?
�? �R

p(y) ` p(y)
Ax

` p(y)?; p(y)
�? � R

` p(y)?; 9xp(x)
9 �R

` 8x(p(x)?); 9xp(x)
8 � R

(8x(p(x)?))
?

` 9xp(x)
�? � L

The second proof is not uniform. Moreover there does not exist a uniform proof of the

sequent. Attempts to use this logical equivalence in a programming language can cause

problems.

For example, consider the Forum [106, 109] fragment of linear logic. As will be dis-

cussed in section 3.7, Forum was designed using a multiple conclusion extension of Uni-

formity. However, for a number of reasons the language is viewed more as a specification

language and less as a logic programming language. Forum makes extensive use of logi-

cal equivalence to encode the whole of linear logic into a fragment of the logic which can

be argued to be uniform. For example, in Forum there is no 9 connective. It is defined

using the equivalence

9xF = (8xF?)
?

Unfortunately, there is a difference between these two formulae. If we are told that the

proof system is complete for uniform proofs then we can deduce that � ` 9xF is prov-

able if and only if � ` F [t=x] is provable for some term t. By encoding the existential

quantifier as a doubly negated universal quantifier this property is lost.

For example, consider the following (legal) Forum program

((p(a)( ?)N (p(b)( ?))( ?

which we shall denote by P . The user now asks whether 9xp(x) holds. The system re-

places the query with the logically equivalent3 formula:

(8x(p(x)( ?))( ?

3F? is encoded as F ( ? in Forum
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The proof below is the only one (modulo trivial permutabilities). Note that no single

value for x can be extracted from it.

? `
? � L

? `
? � L

p(a) ` p(a)
Ax

p(a); (p(a)( ?) `
( �L

p(a); (8x(p(x)( ?)) `
8 � L

p(a); (8x(p(x)( ?)) ` ?
?

8x(p(x)( ?) ` p(a)( ?
( �R

? `
?� L

p(b) ` p(b)
Ax

p(b); (p(b)( ?) `
( �L

p(b); (8x(p(x)( ?)) `
8 � L

p(b); (8x(p(x)( ?)) ` ?
?

8x(p(x)( ?) ` p(b)( ?
( �R

8x(p(x)( ?) ` (p(a)( ?)N (p(b)( ?)
N

P; (8x(p(x)( ?)) `
( �L

P; (8x(p(x)( ?)) ` ?
?

P ` (8x(p(x)( ?))( ?
( �R

Although this proof may appear complex, it actually represents the Forum encoding

of the simpler (and non-uniform!) proof:

p(a) ` p(a)
Ax

p(a) ` 9xp(x)
9

p(b) ` p(b)
Ax

p(b) ` 9xp(x)
9

p(a)� p(b) ` 9xp(x)
�� L

The Forum implementation4 actually loops when given the above program and goal.

In summary, it may be invalid to apply logical equivalences to a logic programming

language. If the equivalence can not be proven by the limited notion of proof used by the

language then the application of the equivalence is likely to violate desirable properties

of the language.

More generally, when a characteriser is fed with a set of valid goals (G) and a set of

valid program formulae (D) for a logic and answers “yes, this is a logic programming

language”, then G and D can be considered to be a logic programming language. How-

ever, the use of logical equivalences to extend, say, G to G 0 is not necessarily valid. That

G 0 can be pre-processed into G using logical equivalences does not mean that G 0 is a logic

programming language. As an analogy, we do not consider C to be a logic programming

language even though logic programming languages can be transformed into it. The in-

tuition here is that when debugging and programming in C we need to think at its level,

4ftp://ftp.cs.hmc.edu/pub/hodas/Forum/forum.tar.Z
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we cannot think at the higher level since the behaviour of the program can violate the

high level semantics.

The essential point is that the level at which the programmer visualises what the pro-

gram is doing is important. An encoding is valid if the programmer can work completely

at the original un-encoded level. We shall return to this issue in section 3.12.

Thus, to summarise this section, uniformity suffers from a number of problems:

� It is defined for single conclusion systems. Furthermore, the obvious extensions to

multiple conclusioned systems suffer from problems.

� Uniformity is reliant on a particular presentation of the logic – changes to the pre-

sentation can affect the resulting logic programming language.

� It does not constrain the proof of sequents with atomic goals.

� It allows for the abuse of logical equivalence.

3.2 What Is Logic Programming?

In our search for alternatives to uniformity as a characteriser of logic programming lan-

guages our ultimate goal is a formal characteriser appropriate for a multiple conclusion

setting.

Before we can begin working with formal definitions however, we need to have an

informal notion of what constitutes a logic programming language. What is the essential

difference (or differences) between a logic programming language implementation and

a theorem prover?

We feel that one of the key differences relates to the notion of auditing. When a pro-

gram fails to work it is a problem to be resolved by the programmer (not the language

implementor). In order to debug the program the programmer needs to be able to audit

the execution, that is to be able to ask “how was this derived?” and get a useful answer.

With a theorem prover there is no guarantee that the system will be able to explain to a

user how the answer was derived. On the other hand one of the defining characteristics
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of a logic programming language is that there exists a simple explanation of the proof

search process.

Note that the audit need not be too detailed. Details can be left out where they are

irrelevant. Details are irrelevant when we can trust the system to never fail. For example,

consider register allocation in high level languages. and garbage collection. In both cases

we have enough faith in the technology to leave it entirely up to the implementation.

We now proceed to examine several informal notions of what makes a logic program-

ming language. These notions will be formalised in later sections. There are a number

of properties that are generally associated with logic programming:

1. Active goals, passive programs

The first basic intuition we have is that there is a fundamental difference between

a program and a goal. The goal is “active” whereas the program is “passive” and

provides a context within which the goal executes. A slightly stronger intuition is

summarised by the slogan:

2. Connectives as Instructions

This slogan suggests that we view the logical connectives as instructions that when

executed result in the appropriate proof search steps being carried out. With this

intuition we can think of a goal as a thread of control and a program as a set of

procedures.

3. Answer substitutions

In logic programming an important role is played by logical variables. When we

ask a query such as factorial(4,X) we expect not only that the system say

yes but also that it provide us with the binding X = 24. As we have seen this

property is not generally satisfied by proof systems.

4. The operational behaviour should be simple

This is related to the notion of auditing. The proof search process should be simple

and understandable. Note that we do not insist that the detailed operational seman-

tics be simple but rather that at a suitable level of abstraction the proof search pro-

cess is simple. In many logic programming languages, features such as constraint
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solving, co-routining and lazy resource allocation make the detailed proof search

mechanism rather complex. In all of these cases however, there is an appropriate

level of abstraction where the proof search mechanism becomes simple. We shall

return to this issue in section 3.12.

5. The language should be efficient

This is certainly desirable but is not a useful guideline for determining what is a

logic programming language. The basic problem with using efficiency as a guide-

line is that certain inference rules may appear to be intractable but may actually

have an efficient implementation. An obvious example is the use of logical vari-

ables and unification to delay the choice of a term in the 9�R and 8�L rules. An-

other example is the handling of the
�R rule in linear logic based programming

languages [70, 150] (see also chapter 4). An additional problem with the use of ef-

ficiency as a characteriser is that the vast majority of logic programming languages

and systems omit the occur check. This yields efficiency but costs soundness.

We formalise some of these intuitions in the simpler single conclusioned setting be-

fore proceeding to the multiple conclusioned setting. Section 3.3 covers the single con-

clusioned case and section 3.5 the multiple conclusioned case. In each of the two sections

we will present a series of possible characterisers interspersed with discussion, examples

and comments on the relationship between the characterisations.

3.3 The Single Conclusion Case

In this section we formalise the notion of what constitutes a logic programming language.

In our presentation we strive to be general. We shall mostly assume only that the logic

in question has a cut-elimination theorem5.

A criterion is a formalisation of the (informal) notion of a characteriser. A criterion

is (usually) a limitation on the structure of proofs. A subset of the logic is deemed a

programming language by a given criterion if the application of the criterion preserves

completeness, that is, if a proof search mechanism limited by the criterion can prove all

5“A logic without cut-elimination is like a car without engine” [47]
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consequences for the subset of the logic. For example, the Horn clause subset of intu-

itionistic logic is complete under uniformity and is deemed to be a logic programming

language by the uniformity criterion.

We write� `x F to indicate that the sequent� ` F is provable and can be proven in a

way which satisfies criterion x. We viewD and G as (generally infinite) sets of formulae

in order to simplify the notation. � and � are finite throughout.

DEFINITION 2 (CRITERION)

A criterion is a decision procedure which takes a sequent � ` F and returns true or false.

We write � `x F to indicate that the sequent � ` F is assigned true by criterion x. We

require that criteria be sound, that is, if � `x F holds then � ` F must be provable.

In general � `x F is defined to hold if � ` F holds and there is a proof which satisfies

some additional constraints. This trivially ensures soundness of the criterion.

The next definition is based on the one in [112]. It provides the link between criteria

and logic programming languages.

DEFINITION 3 (ABSTRACT LOGIC PROGRAMMING LANGUAGE (ALPL))

LetD be a set of legal program formulae, G a set of legal goal formulae and` some notion

of provability. Then the triple< D;G;`> is deemed to be an abstract logic programming

language (ALPL) according to criterion x iff for any finite subset P of D and for any G

in G

P ` G() P `x G

DEFINITION 4

Criterion x is stronger than criterion y (written x y) if we have that

8� 8F � `x F ) � `y F

Let x y. If < D;G;`> is deemed to be an ALPL by criterion x then it is also deemed

to be an ALPL by criterion y.

We write x 6 y when x is not stronger than y.

LEMMA 1

 is a partial order.

Proof:  is reflexive, transitive and antisymmetric (obvious). �
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We now proceed to define the various criteria and to investigate the relationships be-

tween them. This is an exploratory process and (as we shall see) not all of the criteria

defined are useful – some of the criteria (for example criterion A defined below) are in-

sufficient to capture the essence of logic programming. However, for example, criterion

A is necessary, and the fact that it is implied by criterion F (but not by criterion Dstrong)

lends weight to the argument that criterion F is a better test than uniformity.

Our main interest is to build up a global picture of the relationship between the various

criteria (see figure 3.2) and so the detailed proofs of the (many) propositions are not of

direct interest and we relegate them to appendix A. The definitions of the various criteria

are summarised in figure 3.1 on page 50.

DEFINITION 5 (CRITERION A)

� `A F if there is a proof of � ` F which does not use the contraction-right and

weakening-right rules.

Contraction right and weakening right are respectively the rules:

� ` F; F;�
� ` F;�

C �R � ` �
� ` F;�

W � R

Their important property is that they are applicable to any formulaF . Note that in a single

conclusion setting C � R is never applicable and W � R has an empty �.

The intuition behind this criterion is that the goals (being in some sense threads of

control) can not be freely cloned and deleted.

In the definition above, the phrase “if there is a proof” is important. A sequent may

have a proof which violates the criterion in question. However, as long as there is also

another proof which satisfies the criterion we retain completeness since a proof search

process limited by the criterion will still be able to find a proof of the sequent.

When giving examples it is often more illuminating to look at classes of formulae

which are excluded by the criterion. Consider the program p;:p. This program allows

the goal q to be provable. This is not desirable in that the goal is irrelevant. The proof

makes essential use of weakening-right and is excluded by criterion A. Thus criterion A

does not deem the language

D ::= A j :A G ::= A
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to be a logic programming language since the sequent p;:p ` q can only be proved using

W � R:

p ` p Ax

p;:p `
: � L

p;:p ` q
W �R

Criterion A assumes that the logic is similar enough to certain standard logics so that

it possesses the standard structural rules. Linear logic, for example, does not have these

structural rules and hence trivially satisfies this criterion.

DEFINITION 6 (CRITERION B)

� `B F if there exists a proof of � ` F which does not contain a sub-proof of a sequent

of the form � ` for some �.

This is based on the intuitive notion that the program is passive – a program without

a goal should not be able to do anything.

An example of a language that does not satisfy criteriaB is Forum where the program

p; (p( ?) is legal yielding the derivation:

? ` p ` p
p; p( ? `

( �L

If a linear logic programming language satisfies criterion B then whenever the proof

search process finds itself searching for a proof of a sequent of the form � ` ? (or equiv-

alently � `) the search can be immediately terminated with failure.

PROPOSITION 2

B  A

PROPOSITION 3

A 6 B

DEFINITION 7 (CRITERION C)

� `C F if there exists a proof of � ` F where all sequents of the form � ` 9xF are the

conclusion of an application of the 9-right rule.
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This criterion excludes systems where the notion of a unique answer substitution does

not make sense. Specifically it excludes situations such as p(a) _ p(b) ` 9xp(x) and

9xp(x) ` 9xp(x).

Note that there actually exists a weaker criterion which only insists that a sequent

of the form � ` 9xF is the conclusion of the 9-right rule when it occurs at the root of

the proof. Since criterion C is quite weak – it is implied by all variants of uniformity –

weakening it further does not appear to be useful.

At first glance we might expect thatC  A since criterionC prohibits the weakening

of formulae of the form 9xF . However this is not sufficient since it is possible to apply

the 9 � R rule and then weaken the result.

PROPOSITION 4

C 6 A

PROPOSITION 5

C 6 B

PROPOSITION 6

A 6 C , B 6 C

The next criterion is uniformity, introduced in [112]. Uniformity restricts sequents

with non-atomic goals to be the conclusions of right rules. There is some scope for vari-

ation though, as we have a choice as to which right rule. Even for a single conclusion

system there is still a choice between a structural and a logical right rule.

The wording in [112] requires that a non-atomic goal be the conclusion of the right

rule which introduces its topmost connective – i.e. the appropriate logical rule. Other pa-

pers (for example [70]) do not specify which right rule. Note that for a single conclusion

setting with no structural rules (for example Lolli [69, 70]) these two definitions coincide.

Our definition of Dweak allows for any right rule to be used and Dstrong requires that

the right rule introduce the goal’s topmost connective.

DEFINITION 8 (CRITERION Dweak)

� `Dweak
F if there exists a proof of � ` F where all sequents of the form � ` G (for

non-atomic G) are the conclusion of some right rule.
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DEFINITION 9 (CRITERION Dstrong)

� `Dstrong F if there exists a proof of � ` F where all sequents of the form � ` G

(for non-atomic G) are the conclusion of the right rule which introduces the topmost

connective in F .

We use D to denote both Dweak and Dstrong.

Examples of proofs that are excluded by criterion D but not by criterion C include

p ` p Ax
q ` q Ax

p; q ` p
 q

� R

p
 q ` p
 q

� L

p ` p Ax

p `?p
?�R

?p `?p
?� L

In both cases the only possible proof begins with a left rule.

Note that strictly speaking, criterion Dstrong does not allow the rule

� `
� `?F

W ?� R

since it does not add the desired connective to an existing formula. For intuitionistic lin-

ear logic the use of ? in goal formulae is of limited use since it only allows weakening

and not contraction. Note that a similar effect can be encoded as F �?.

PROPOSITION 7

Dstrong  Dweak

PROPOSITION 8

Dweak  C

PROPOSITION 9

Dstrong  C

PROPOSITION 10

C 6 D

PROPOSITION 11

Dweak 6 Dstrong

PROPOSITION 12

A 6 D , B 6 D
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We might expect that D  A; however as in the case for criterion C we can apply

right rules and then weaken atoms.

PROPOSITION 13

D 6 A

PROPOSITION 14

D 6 B

3.3.1 Extending Uniformity to Deal with Atomic Goals

Neither version of uniformity places any limitation on the proof of sequents of the form

� ` A where A is atomic. This is a problem since an atom is just as much a thread of

control as is a compound goal. It differs from the logical connectives in that where the

semantics of ^ and 9 are fixed by the logic, the semantics of p or append is defined by

the program.

We argue that limiting in some way the search for proofs of sequents with atomic

goals is desirable.

Firstly, note that criterion D is not stronger than criteria A and B. The reason is es-

sentially that although the conditions of criterion D do imply criteria A and B these con-

ditions are not applied when the goal is atomic and hence violations of criteria A and B

can occur when the goal is atomic. As we shall see applying an appropriate constraint to

the search for proofs of sequents with atomic goals yields a criterion which is stronger

than criteria A and B.

Secondly criterion D allows some rather bizarre logic subsets as programming lan-

guages. Consider the language

D ::= D ^ D j D _ D j 9xD j 8xD j A j :A G ::= A

Clearly this language satisfies criterionD since the goal cannot be non-atomic. However

it is hard to consider it to be a programming language since there is no limitation on the

structure of the proof. Other evidence against it being considered a logic programming

language is that goals lack variables and thus a notion of answer substitutions. Further-

more it fails criteria A and B.
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There are a number of possible approaches to limiting the proof search process for

sequents with atomic goals:

1. Simplicity

2. Static Clausal Form

3. Dynamic Clausal Form

The first, the notion of simplicity, was introduced in [107]. Simplicity restricts occur-

rences of the! �L rule to have axiomatic right hand premises. This is related to [93].

Note that this assumes that the logic has the rule:

� ` F �; G ` H
�; F ! G ` H

! �L

The advantage of simplicity is that it is simple to reason about and to compare to other

criteria. The disadvantage is that it is not general. The other two approaches use the

notion of clausal form. We view a program as a set of clauses of the form G ! A with

the single left rule:

� ` G
� ` A Resolution where (G ! A) 2 �

This view can be used as a criterion in two different ways. Static clausal form insists

that the program is given in clausal form. Dynamic clausal form insists that the logical

presentation bundle all of the left rules into a single rule that is applied whenever the goal

is atomic. This can be seen as deriving clauses at runtime. The single rule can be quite

complex but it yields a system that, in conjunction with uniformity can truly be said to be

goal directed — for any sequent the choice of which rule to apply is determined entirely

by the goal.

Static clausal form is usable although it does tend to overly restrict the program. We

shall consider dynamic clausal form since it generalises both simplicity and static clausal

form.

A problem with dynamic clausal form is that formulating an equivalent logical system

which combines the left rules into a single rule can involve considerable ingenuity (see
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for example [122]) and as a result it is generally hard to show that it is not possible to

combine the left rules into a single rule. Thus rather than modifying the proof system

we retain the original system and require that a sequence of applications of left rules be

able to be treated as an atomic entity. That applications of left rules are “bundle-able”

implies that a single left rule can be devised (namely the one that does the appropriate

bundling); however, the converse does not hold since even though bundling sequences

of left rules may not be possible without a loss of completeness it may be possible in a

different presentation of the logic.

We bundle up a sequence of left rule applications into a left-focused proof step. We

then consider what languages are complete when left rules can only be applied as part of

a left-focused proof step.

DEFINITION 10 (LEFT FOCUSING)

A proof of a sequent is left-focused if one of the following hold:

1. It consists of a single application of the Ax rule.

2. It begins with a sequence of left rules resulting in a proof tree with open nodes

�i ` Fi:
�1 ` F1 : : : �n ` Fn....

�....
D;� ` A

]� L

such that:

(a) The goal A is eliminated, that is, it is not any of the Fi.

(b) � consists only of left rules or Ax.

(c) All of the principal formulae in � are sub-formulae of D (or D itself).

We have to take care with multiple copies of atoms. For example the proof

� ` p p ` p
�; p! p ` p

! �L
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has a single open node � ` p where F1 = A = p; however by labelling distinct

occurrences of p we can see that the goal p1 is actually eliminated:

� ` p2 p3 ` p1
�; p2 ! p3 ` p1

! �L

The intuition is that a left-focused proof of an atomic goal selects a program formula

and reduces it entirely. In the process, the goal is satisfied and new goals are possibly

created. For example the following proof fragment is left-focused:

r;� ` q p ` p Ax

q( p; r;� ` p
( �L

(q( p)
 r;� ` p

� L

sN ((q( p)
 r);� ` p
N� L

This is related to the notion of resolution developed in [122].

DEFINITION 11 (CRITERION E)

� `E F if there exists a proof of � ` F where all (sub)proofs of sequents with atomic

goals are left-focused.

As an example consider the language

D ::= D _D j D ^ D j 9xD j 8xD j A j :A G ::= A

As we have seen this language satisfies criterion D but it is rejected by criterion E since

the sequent p(1) _ p(2); 8x:p(x) ` q cannot be proved in an appropriate manner. The

proof cannot begin with 8 � L since there is no term t such that both p(1) ` p(t) and

p(2) ` p(t) are provable. Hence the proof must begin with _ � L:

p(1) ` p(1)
Ax

p(1);:p(1) `
: � L

p(1);:p(1) ` q
W � R

p(1); 8x:p(x) ` q
8 � L

p(2) ` p(2)
Ax

p(2);:p(2) `
: � L

p(2);:p(2) ` q
W �R

p(2); 8x:p(x) ` q
8 � L

p(1) _ p(2); 8x:p(x) ` q
_ � L

Consider now whether this proof is left-focused. It does not begin with an axiom rule

and hence must begin with a sequence of left rules. If we take this sequence of left rules
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to be just the first rule (_ � L) then we fail the first sub-condition of definition 10 since

the goal (q) is not eliminated. If we take the sequence of left rules to be more than just

the first rule then we fail the third sub-condition since principal formulae are from both

program clauses and not from a single D.

Putting criteria Dstrong and E together gives us criterion F :

DEFINITION 12 (CRITERION F )

� `F F if there is a proof of � ` F where any sequent of the form � ` A (where

A is atomic) is the conclusion of a left-focused (sub-)proof and any sequent of the form

� ` G (G non-atomic) is the conclusion of the right rule which introduces the topmost

connective in G.

PROPOSITION 15

F  Dstrong  Dweak

PROPOSITION 16

D 6 E

PROPOSITION 17

F  C

PROPOSITION 18

C 6 F

PROPOSITION 19

A 6 F

PROPOSITION 20

F  A

PROPOSITION 21

F 6 B

PROPOSITION 22

B 6 F
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PROPOSITION 23

E 6 C

COROLLARY:E 6 F , E 6 D (since F  C and D  C)

PROPOSITION 24

E 6 B

PROPOSITION 25

E 6 A

PROPOSITION 26

B 6 E

COROLLARY:A 6 E (since B  A)

PROPOSITION 29

Let � ` � be a sequent in a logic subset which satisfies criteria E and Dstrong and such

that � ` � is provable. Then there exists a proof of � ` � which satisfies criterion F .
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Figure 3.1 Single Conclusion Criteria Definitions

Criteria Definition

A No W �R

B No sub-proofs of � `

C � ` 9F is conclusion of 9 � R rule

Dweak � ` F (F non-atomic) are conclusion of a right rule

Dstrong � ` F (F non-atomic) are conclusion of the right rule

E Atomic goals are conclusion of left-focused proof step

F E +Dstrong

Figure 3.2 Relationships for Single Conclusion Criteria
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3.4 Examples

We now consider a number of languages and relate them to the various criteria. Note that

most of the languages in figure 2.8 are multiple conclusion and are covered in section

3.6. Both languages in this section have been shown (in [112] and [70] respectively) to

satisfy uniformity. The contribution here is to show that they also satisfy criterion F .

Since criterion F is stronger than uniformity this is a new result.
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3.4.1 Pure Prolog

Prolog is often presented as a language based on classical logic which is multiple con-

clusion. Actually, the language does not make use of multiple conclusions and indeed,

intuitionistic and classical logic agree where the Prolog subset is concerned. The Prolog

syntax is given by the following BNF. Note that whenever the user’s query is non-ground

there is an implicit existential quantifier involved. The following grammar makes this

explicit.

D ::= [8x](G 0 ! A) G ::= 9x(A1 ^ : : : ^ An)

Prolog satisfies all of the criteria.

PROPOSITION 30

Prolog satisfies criterion B

Proof: Proof by induction. The only rules applicable to a sequent of the form � ` are

8-L,!-L,W -L andC-L. It is easy to verify that whenever the conclusion of one of these

rules has an empty goal so does at least one of its premises. Note that the axiom rule needs

a non-empty goal. Hence no proof of a sequent with an empty goal can succeed. �

LEMMA 31

Let � � D and F 2 G. Then for any proof of � ` F all sequents in the proof are of the

form �0 ` F 0 such that �0 � D and F 0 2 G.

Proof: Proof by induction. The only rules which can be applied in the proof areAx, ^-R,

9-R, 8-L,!-L, W -L and C-L. Note that the previous lemma precludes the use of W -R.

It is easy to show that if the conclusion of one of these rules satisfies the condition then

so do its premises. �

PROPOSITION 32

Prolog satisfies criterion Dstrong

Proof: To show that Prolog satisfies criteriaDstrong we need to show that for non-atomic

goals the appropriate right rule can be applied immediately without loss of completeness.

That is that

1. � ` 9xF iff � ` F [t=x] for some term t.

2. � ` F1 ^ F2 iff � ` F1 and � ` F2
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Showing this involves a permutability argument. From the permutability properties of

classical logic (see section 2.4) it is evident that ^�R permutes down past any rule and

that 9 � R permutes down past both 8 � L and! �L. Hence, if a sequent is provable

then by permuting occurrences of right rules down we can obtain a proof where the two

properties above are satisfied. �

COROLLARY:Prolog satisfies criteria Dweak, C and A.

DEFINITION 13 (DECOMPOSITION)

A sequence of left rules is said to decompose a program formula D if their principal for-

mulae are sub-formulae of D (or D itself) and no more left rules can be applied to sub-

formulae of D.

Intuitively decomposition involves selecting a program formula and applying left rules

exclusively to it until one is left only with atoms.

PROPOSITION 33

Prolog satisfies criterion E

Proof: Consider a proof of a sequent of the form D;� ` A. We know that D must have

the form [8x](G ! A). Note that the only relevant left rules (8,! and C) permute with

each other. Thus we can commit to decomposing a clause as an atomic proof step. This

proof step looks like:

A ` A

....
�; 8xG ! A ` G

�; 8xG ! A;G ! A ` A
! �L

�; 8xG ! A; 8xG ! A ` A
8 � L

�; 8xG ! A ` A
C � L

Observe that the proof step is left-focused and that it succeeds if and only if the goal

matches the head of the clause. �

PROPOSITION 34

Prolog satisfies criterion F

Proof: Prolog satisfies criteria Dstrong and E. According to proposition 29 it therefore

satisfies criterion F . �
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3.4.2 Lolli

Lolli was introduced in [69]. For our purposes it can be viewed essentially as a single

conclusion version of Lygon6. Lolli’s syntax is given by the BNF:

D ::= > j A j D ND j G ( D j G ) 7D j 8x:D

G ::= > j A j G N G j D( G j D ) G j 8x:G j G � G j 1 j G 
 G j!G j 9xG

PROPOSITION 35

Lolli satisfies criterion A

Proof: Obvious since linear logic does not possess the weakening right rule. �

PROPOSITION 36

Lolli satisfies criterion B

Proof: Proof by induction.

Base case: No sequent with an empty goal can succeed since the program cannot contain

the constants 1 and ? and the Ax rule requires a non-empty goal.

Induction: If the conclusion of a left rule has an empty goal then so does at least one

premise of the rule. Hence no sequent with an empty goal can be proven. �

PROPOSITION 37

Lolli satisfies criterion Dstrong

Proof: See [66]. The proof basically involves the use of permutability properties to trans-

form a given proof into one satisfying Dstrong. �

COROLLARY:Lolli satisfies criteria Dweak and C.

We now look at showing that Lolli satisfies criterion E. The steps involved are gen-

eral and remain the same when showing that other languages satisfy criterion E.

1. Show that when the goal is atomic we can decompose a single program formula

before considering other program formulae without losing completeness.

2. Show that if such a proof step is provable then there exists a proof which consumes

the (atomic) goal.

6Conversely, Lygon could be viewed as a multiple conclusion generalisation of Lolli.
7a) b � (!a)( b
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If these two requirements are met then when searching for a proof it is sufficient to

work on a single program clause at a time and the resulting proof is guaranteed to be

left-focused.

For example consider proving the sequent:

8x(p(x)N r); q N r; 8x((q 
 r)( p(x)) ` p(a)

Since this sequent represents a valid Lolli program and goal we are guaranteed that it is

provable if and only if there is a proof which manipulates program clauses one at a time

and which is left-focused. One such proof begins by applying a left-focused proof step

to 8x((q 
 r)( p(x)) yielding the following:

8x(p(x)N r); q N r;` q 
 r p(a) ` p(a)

8x(p(x)N r); q N r; ((q 
 r)( p(a)) ` p(a)
( �L

8x(p(x)N r); q N r; 8x((q 
 r)( p(x)) ` p(a)
8 � L

This is left-focused. Since the goal is compound we can apply a right rule:

q N r ` q 8x(p(x)N r) ` r

8x(p(x)N r); q N r ` q 
 r

� R

....

We can then finish the proof by applying a left-focused proof step to each of the two open

nodes:

q ` q
q N r ` q

N� L

r ` r
p(b)N r ` r

N� L

8x(p(x)N r) ` r
8 � L

8x(p(x)N r); q N r ` q 
 r

� R

....

Note that the only place in the proof search process where there was any choice to be

made as to which inference rule to apply (and to which formula) was at the very start

when we could have selected to decompose an alternative program clause; in the rest of

the proof search process the selection of the inference rule and principal formula was

deterministic.

We now apply the procedure outlined to showing that Lolli satisfies criterion E.
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LEMMA 38

Let � be a multiset of Lolli program formulae and let F be a Lolli goal formula such that

� ` F is provable. Then there is a proof of � ` F where all left rules are part of a se-

quence which decomposes a single clause.

Proof: Observe that all of the left inference rules which can be applied in a Lolli deriva-

tion are synchronous. Hence according to the focusing property [6] once we have applied

a left rule to a program formula we can continue to decompose that formula without a loss

of completeness. Furthermore, as observed in [6]:

When a negative atomA? is reached at the end of a critical focusing section,

the Identity must be used, so that A must be found in the rest of the sequent,

either as a restricted resource : : : or as an unrestricted resource : : :

Thus, once a program clause is decomposed to an atom on the left there is no loss of

completeness in requiring that the next rule be the axiom rule. �

We now need to show that if the decomposing proof step is provable then there ex-

ists a proof which consumes the (atomic) goal. In the following, when we say that “the

proof fails” we mean that it can not be completed with an axiom rule. In general, it may

be possible to complete the proof step using other program clauses. However, once we

have chosen to decompose a given program clause, lemma 38 allows us to insist that the

decomposing proof step terminate with an axiom rule where the program clause reduces

to an atom. Hence we can ignore possible completions of the proof step which involve

other program clauses without a loss of completeness.

We begin by defining a notion of an atom matching a clause. We then argue case-wise

that:

(a) If the atom does not match the clause then a proof step focusing on the clause must

fail.

(b) If the atom matches the clause then a proof step focusing on the clause either fails

(see the note above) or eliminates the (atomic) goal.

In the following we let F be the selected program clause and A the (atomic) goal.
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DEFINITION 14

A matches the Lolli program clause F iff

� F is atomic is equal8 to A.

� F = F1 N F2 and A matches at least one of the Fi

� F = G( F 0 and A matches F 0

� F = G) F 0 and A matches F 0

� F = 8xF 0 and A matches F 0

LEMMA 39

Consider a proof step which decomposes the Lolli program clauseF in the sequent�; F `

AwhereA is atomic. Then ifAmatchesF then the proof step either eliminatesA or fails;

otherwise, if F does not match A then the proof step fails.

Proof: Induction on the structure of F .

� F is atomic: Without a loss of completeness (lemma 38) the sequent must be the

conclusion of an axiom rule. If F matches A then we have �; A ` A which either

eliminates A or fails (if � contains linear formulae). If F does not match with A

then the axiom rule cannot be applied and the proof fails.

� F = >: There is no left rule so the proof fails.

� F = F1 N F2: If F matches A then without loss of generality let A match F1 and

not match F2. By the induction hypothesis the proof which uses the left N rule to

select F1 either eliminatesA or fails. The proof which uses the leftN rule to select

F2 fails. If F does not match A then A matches neither F1 nor F2 and by induction

the premise of the N� L rule fails.

� F = G( F 0: The relevant rule is:

�0; F 0 ` A � ` G

�;�0; G( F 0 ` A
( �L

8At the implementation level read as “is unifiable with A”
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Figure 3.3 Summary of Single Conclusion Languages and Criteria

Language A B C Dweak Dstrong E F

Prolog ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lolli ✓ ✓ ✓ ✓ ✓ ✓ ✓

Since A matches F iff it matches F 0, according to the induction hypothesis, the

premise of the inference fails ifA does not matchF 0 and hence the conclusion fails.

Likewise, if A matches F 0 then the sequent is provable only if the proof eliminates

A and this property carries through to the conclusion of the inference.

The remaining two cases are analogous. �

PROPOSITION 40

Lolli satisfies criterion E

Proof: Let � ` A be provable. The sequent must be the conclusion of either an axiom

rule or a left rule. If it the conclusion of an axiom inference then we are done. Otherwise,

the left rule is being applied to F 2 �. According to lemma 38 there is a proof which

focuses on F . According to lemma 39 this proof eliminates A. �

PROPOSITION 41

Lolli satisfies criterion F

Proof: Lolli satisfies criteria E and Dstrong and by proposition 29 it therefore satisfies

criterion F . �

3.5 The Multiple Conclusioned Case

We now generalise our criteria to the multiple conclusion case. Most of the commen-

tary carries across unchanged. As a result this section contains mostly definitions and

theorems.

DEFINITION 15 (CRITERION)

A criterion is a decision procedure which takes a sequent � ` � and returns true or false.

We write � `x � to indicate that the sequent � ` � is assigned true by criterion x. We
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require that criteria be sound, that is, if � `x � holds then � ` � must be provable.

In general � `x � is defined to hold if� ` � holds and there is a proof which satisfies

some additional constraints. This trivially ensures soundness of the criterion.

The next definition is based on the one in [112]. It provides the link between criteria

and logic programming languages.

DEFINITION 16 (ABSTRACT LOGIC PROGRAMMING LANGUAGE (ALPL))

LetD be a set of legal program formulae, G a set of legal goal formulae and` some notion

of provability. Then the triple< D;G;`> is deemed to be an abstract logic programming

language (ALPL) according to criterionx iff for any finite subsetP ofD and for any finite

subset G of G

P ` G() P `x G

DEFINITION 17

Criterion x is stronger than criterion y (written x y) if we have that

8� 8� � `x � ) � `y �

Let x y. If < D;G;`> is deemed to be an ALPL by criterion x then it is also deemed

to be an ALPL by criterion y.

We write x 6 y when x is not stronger than y.

LEMMA 42

 is a partial order.

Proof:  is reflexive (obvious), transitive (obvious) and antisymmetric (obvious). �

The definitions of the various criteria are summarised in figure 3.4 on page 68.

DEFINITION 18 (CRITERION A)

� `A � if there is a proof of � ` � which does not use the contraction-right and

weakening-right rules.

As in the single conclusion case the intuition is that program threads do not sponta-

neously die or clone themselves. Interestingly this criterion is weaker here than in the
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single conclusion setting. Consider the following proof

q ` q
Ax

q;:q `
: � L

q;:q ` p
W �R

In a single conclusion setting the weakening step must take place before the :q can be

moved across the turnstile. On the other hand in a multiple conclusion system there is

no requirement for there to be at most one conclusion and the following proof becomes

possible

q ` q
Ax

q ` q; p
W � R

q;:q ` p
: � L

This suggests that for classical logic limiting occurrences of weakening-right is not as

strong a criterion as it is for intuitionistic logic. Note that it is possible to eliminate weak-

ening altogether by combining it with the axiom rule. This can be done by introducing

the composite rule Ax0:

� ` � Ax0 � \� 6= ;

Thus, placing conditions on occurrences of weakening-right does not seem to limit the

class of formulae that are judged to be logic programming languages since weakening

can be eliminated. On the other hand, the absence of contraction-right is a limitation and

thus criterion A is not trivial for classical logic.

DEFINITION 19 (CRITERION B)

� `B � if there is a proof of � ` � which does not contain a sub-proof of a sequent of

the form � ` for some �.

This is the same as the single conclusion version. As a result of the reduction in power

of criterionAwe have that for multiple conclusion logics criteriaA andB are not related.

PROPOSITION 43

B 6 A

PROPOSITION 44

A 6 B
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The next criterion captures the importance of answer substitutions. The single con-

clusion definition covers the case � ` 9xF ; the question remains however as to what

requirement we place on sequents of the form � ` 9xF;�? There are two possibilities;

we can either just retain the single conclusion definition and not impose any constraints

on the case where there are multiple goal formulae or we can insist that the sequent is the

conclusion of an 9-R rule whenever it contains a formula whose topmost connective is

9, regardless of what other formulae are present. This second possibility is the stronger

of the two and corresponds to Cstrong.

DEFINITION 20 (CRITERION C)

� `C � if there exists a proof of � ` � where all sequents of the form � ` 9xF are the

conclusion of an application of the 9-right rule.

Note that criterion C is weak in that it is only applicable to sequents where the con-

clusion contains the single goal 9xF .

DEFINITION 21 (CRITERION Cstrong)

� `Cstrong � if there exists a proof of � ` � where all sequents of the form � ` 9xF;�

are the conclusion of an application of the 9-right rule.

PROPOSITION 45

Cstrong  C

We might expect that C  A since criterion C prohibits the weakening of formulae

of the form 9xF . However, as in the single conclusion case, this is not sufficient - one

can always apply the 9 � R rule and then weaken the result.

PROPOSITION 46

C 6 A , Cstrong 6 A

PROPOSITION 47

C 6 B , Cstrong 6 B

PROPOSITION 48

A 6 C , B 6 C , A 6 Cstrong , B 6 Cstrong
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3.5.1 Generalising Uniformity to the Multiple Conclusion Case

Throughout the next section we shall useA to denote a multiset of atomic formulae and

C to denote a multiset of compound (i.e. non-atomic) formulae.

In generalising uniformity to a multiple conclusion setting we have a choice to make.

There are two possibilities:

(1) All sequents in the proof of the form � ` C are the conclusion of a right rule. That

is, if the succedent consists entirely of compound goals then the sequent must be

a conclusion of a right rule. If the succedent contains both atomic and compound

goals then no restrictions are applied. This is analogous to criterion C.

(2) All sequents in the proof of the form � ` C;A are the conclusion of a right rule.

That is, if the succedent contains any compound goals then the sequent is the con-

clusion of a right rule. This is analogous to criterion Cstrong.

In addition to requiring the proof to be guided by compound goals we can also require

that the proof process be guided by atomic goals. There is a single mechanism for doing

this and the choice we face is whether to apply it or not. Our choices are:

(a) All sequents are either the conclusion of a right rule or the conclusion of a left-

focused proof step.

(b) There is no use of atomic goals to guide the proof search, so for example there is

no restriction on the proof of sequents of the form � ` A.

Since these two choices are independent we can consider various combinations. As

we shall see some combinations do not make sense and some combinations coincide.

There are four combinations of choices:

(1b) We choose to restrict ourselves to right rules only when there are no atomic goals

(1) and atoms are not used to guide the proof (b). In this situation we are obtaining

only partial guidance from compound goals. Since we do not use atoms to guide

the proof there is insufficient guidance to be able to consider this choice goal di-

rected. For instance there is no restriction whatsoever on the proof of sequents of

the form � ` A; C.
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(1a) By making use of atomic goals we obtain a characteriser that is useful. Note that it

is essential that we have a notion of atomic goals directing the proof search process.

We term this characteriser synchronous uniformity. This notion is similar to the

notion of locally LR proof search which was used in the design of Lygon [122].

(2) By choosing to be guided by compound goals even if there are atomic goals we

obtain sufficient guidance. The only place where the proof search process has no

restrictions is in the proof of sequents of the form � ` A. As in the single con-

clusion case we argue that making use of atomic goals to direct the proof search

process is desirable. Note that the need to use atomic goals to guide the proof is not

as vital here as it is for the previous case. We term this characteriser asynchronous

uniformity. This is the notion that is used in (for example) the design of Forum

[106].

3.5.2 Asynchronous Uniformity

Given that we can apply right rules whenever there is a compound goal formulae it is

easy to show that we cannot have impermutabilities on the right. Consider two connec-

tives whose right rules do not permute, say 
 andO, whereOmay need to be done first.

Consider now a sequent of the form

!((q? O r)( p) ` p; q 
 r?

This sequent is provable, but the proof violates synchronous uniformity since we need to

replace the pwith q?Or before we can apply the
 rule; that is, although the goal contains

a non-atomic formula we have to apply left rules before we can apply a right rule. Thus

asynchronous uniformity implies that the right rules permute over each other9. Note that

this is independent of whether atomic goals are used to guide the proof.

In order to define this formally (as criterionDA) we shall need a notion of left-focusing

for multiple conclusion logics.

9This assumes that program formulae are permitted to have the formD ::=!(G ( A). This assumption

holds for all languages considered in this thesis.
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DEFINITION 22 (LEFT FOCUSING)

A proof of a sequent is left-focused if one of the following hold:

1. It consists of a single application of the Ax rule.

2. It begins with a sequence of left rules resulting in a proof tree with open nodes

�i ` �i:
�1 ` �1 : : : �n ` �n....

�....
D;� ` A;�

]� L

such that:

(a) The goalsA are eliminated, that is, they are not in any of the �i.

(b) � consists only of left rules or Ax.

(c) All of the active formulae in � are sub-formulae of D (or D itself).

As in the single conclusion case we have to take care with multiple copies of atoms.

For example the proof
� ` p p ` p

�; !(p( p) ` p
! �L

has F1 = A = p. However by labelling distinct occurrences of p we can see that the

goal p1 is actually eliminated:

� ` p2 p3 ` p1
�; !(p2( p3) ` p1

! �L

The intuition is that a left-focused proof of an atomic goal selects a program formula

and reduces it entirely. In the process, the goal is satisfied and new goals are possibly

created.

Note that for Forum there is a minor technicality – A could be empty. This only oc-

curs with ? in clauses. Such clauses can be resolved against at any time. It is possi-

ble to insist in the definition of left-focusing that A be non-empty. If this is done then
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Forum� does not satisfy criterion DA since the sequent >( ? ` p is provable but the

only proof possible begins with a left-focused proof step which does not eliminate p:

? ` ` >; p
>( ? ` p

( �L

Note that the use of criterion DS precludes clauses of the form G ( ? even without

limitingA to be non-empty (although we need to assume that the language in question is

sufficiently rich). Assuming that> and p
q are both valid goals we have that the sequent

>( ? ` p
 q is provable (the left proof below). However, since the goal consists of a

single compound formula criteriaDS requires that there exists a proof which begins with


�R and as the right proof below demonstrates no such proof exists.

? `
? � L

` >; p
 q
>�R

>( ? ` p
 q
( �L

? ` ` >; p
>( ? ` p

( �L
` q

>( ? ` p
 q

� R

The example used does not apply toDA since it makes use of the goal formula p
q which

is not asynchronous and which would not be permitted to occur in a language derived

using DA. The assumption of “sufficiently rich” needed above includes the presence of

synchronous goal connectives which prevent the language from being accepted as a logic

programming language by criterion DA.

DEFINITION 23 (CRITERION DA)

� `DA
� if there exists a proof of � ` � such that

� For any sequent of the form � ` �; C and for any (compound) formulae F 2 C

there is a proof where the sequent is the conclusion of the right rule which intro-

duces the topmost connective in F .

� The proof of any sequent of the form � ` A is left-focused.

3.5.3 Synchronous Uniformity

Synchronous uniformity relaxes the strong requirement that compound goals direct the

proof search process whenever they are present. Doing this is necessary in order to al-

low impermutabilities on the right to exist within a language. To be able to obtain less
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guidance from compound goals we need to compensate by obtaining more guidance from

atomic goals.

Note that for a sequent of the form � ` A; C we allow the proof to be guided by

an atom even though there are compound goals present. We cannot require that such

sequents be guided by atoms in all cases (thus giving priority to resolution over decom-

position) since in some cases decomposing compound goals will need to be done before

resolution. A simple example is the proof of the sequent

pO (q O r) ` pO q; r

where we need to decompose the formula pO q so that the p is available to the resolution

of r. Another example is the proof of the sequent10

(r O p)N (r O q) ` pN q; r

where p N q needs to be done first so that we can choose different program clauses for

the two sub-proofs:

r ` r p ` p
r O p ` p; r

O� L

(r O p)N (r O q) ` p; r
N� L

r ` r q ` q
r O q ` q; r

O� L

(r O p)N (r O q) ` q; r
N� L

(r O p)N (r O q) ` pN q; r
N� R

DEFINITION 24 (CRITERION DS )

� `DS
� if there exists a proof of � ` � such that

� Any sequent of the form � ` C is the conclusion of a right rule which introduces

the topmost connective of a formula F 2 C.

� Any sequent in the proof is either the conclusion of a right rule which introduces the

topmost connective of a formula in the goal or is the conclusion of a left-focused

(sub-)proof.

We shall use D to refer to either of DA and DS.

10Note that this could also be written as: (p?( r) N (q?( r) ` pN q; r



66 CHAPTER 3. DERIVING LOGIC PROGRAMMING LANGUAGES

Both DA and DS require that a right rule introduces the topmost connective of a for-

mula. Strictly speaking, this means that the following rules are not acceptable in a proof:

� ` �
� `?F;�

W ?�R
� `?F; ?F;�
� `?F;�

C?� R

There are two solutions

1. View weakening and contraction of goals as undesirable even if they are limited to

certain goals (i.e. it’s a feature, not a bug)

2. Relax the definition to require that the right rule be specific to the top level con-

nective - this rules out weakening and contraction.

Of the languages considered in figure 2.8, the difference only affects ACL and it can be

argued that the language still satisfies criterion DS even though it allows formulae of the

form ?Am. The reason for this is that the formulae which can be replicated by contraction

are of a very limited form – they must be “message predicates” – and the contraction can

be delayed until a “message receive” (Am 
G) is executed.

Note that the current Lygon implementation does not allow goals of the form ?F since

they do cause a problem. Specifically, it becomes hard to determine that a sequent of the

form � ` G; ?F has no proof since the proof search space is infinite.

In general an application of right contraction cannot be delayed indefinitely since the

formula may be needed. In the proof of the sequent

!(1( (r O q)); !(q( (pO p)) ` r; ?p

we need to begin by applying C? � R twice so that we can resolve against the second

clause.

Finally, note that it is possible to avoid the use of ? in goals by replacing ?F with a

new constant p and adding the program clause !(((F O p)�?)( p). Similar behavior

to ? can be captured as follows:
....

� ` F; p;�
� ` F O p;�

� ` (F O p)�?;�

� ` p;�

....
� ` �

� ` ?;�

� ` (F O p)�?;�

� ` p;�
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For example, the sequent above could be written as

!(1( (r O q)); !(q( (pO p)); !(((pO p0)�?)( p0) ` r; p0

This technique is not perfect since the right ! rule behaves differently but it does cover

common logic programming uses of ? (as opposed to theorem proving applications).

PROPOSITION 49

B 6 D , A 6 D

PROPOSITION 50

DA  A

PROPOSITION 51

DS  A

PROPOSITION 52

D C

PROPOSITION 53

DA  Cstrong

PROPOSITION 54

DS 6 Cstrong

PROPOSITION 55

D 6 B

PROPOSITION 56

C 6 D , Cstrong 6 D

PROPOSITION 57

DS 6 DA

PROPOSITION 58

DA  DS
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Figure 3.4 Multiple Conclusioned Criteria Definitions

Criteria Definition

A No C �R or W �R

B No sub-proofs of � `

C � ` 9F is conclusion of 9 �R

Cstrong � ` 9F;� is conclusion of 9 �R

DA � ` �; C is the conclusion of a right rule

� ` A is left-focused

DS � ` C is the conclusion of a right rule

� ` �;A is either left-focused or the conclusion

of a right rule

The previous proposition implies that any language that satisfies criterion DA also

satisfies criterion DS. However it does not tell us anything about the properties of lan-

guages which satisfy DS but not DA.

Note that for sequents of the form � ` C criterion DS requires that the sequent be

the conclusion of a right rule which introduces the topmost connective of some formula

F 2 C whereas DA requires that for every formula F 2 C there exist a proof which

begins by introducing that formula’s top level connective.

It appears feasible to consider a criterion lying between DA and DS that modifiesDS

by requiring that sequents of the form � ` C have a proof which introduces the topmost

connective of F for all F 2 C. This differs from criterion DA in that there is no require-

ment that sequents of the form � ` C;A be the conclusion of a right rule.

PROPOSITION 59

Let DS+ be a criterion that modifies DS by requiring that sequents of the form � ` C

have a proof which introduces the topmost connective of F for all F 2 C. Then DS+ is

equivalent to DA.
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Figure 3.5 Relationships for Multiple Conclusion Criteria
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3.6 Examples

Before we proceed to consider specific example languages, let us establish a few more

results.

LEMMA 60

Let �; A ` � have a linear logic proof. Then there is an incomplete proof of �0;� `

�;�0 which has an identical structure and where some of the sequents of the form

A ` A
Ax

have been replaced by the open node

�0 ` A;�0

Proof: We use induction. Observe that the “axiomatic” rules (Ax, 1�R ,>�R) remain

unchanged except that Ax rules are changed as specified. All of the unary rules except

for ! � R allow the induction to proceed smoothly. Observe that the two binary rules -


�R andN�R - also satisfy the induction. In the case of the !�R rule the conclusion

cannot contain any atoms; thus even if it does occur in a proof of �; A ` � it remains

unaffected by the replacement of A at the root since the change gets shunted along with

occurrences of the root sequent’s formula A. �
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For example let � = p ( q, let � = q
!(p ( p) and let A = p. Then the

sequent �; A ` � is provable:

p ` p
Ax

q ` q
Ax

p( q; p ` q
( �L

p ` p Ax

` p( p
( �R

`!(p( p)
!� R

p( q; p ` q
!(p( p)

� R

By the previous lemma there exists a proof of �;�0 ` �;�0 that is a proof of p( q;�0 `

q
!(p( p);�0 where some of the axiom inferences are replaced accordingly and where

the structure of the proof is preserved:

�0 ` p;�0 q ` q
Ax

p( q;�0 ` q;�0
( �L

p ` p
Ax

` p( p
( �R

`!(p( p)
!�R

p( q;�0 ` q
!(p( p);�0

� R

The next theorem asserts that when the program formulae have a particular form then

limiting the proof search process to only perform left-focused proof steps when the rel-

evant atomic goals are present preserves completeness. A problem we shall encounter

in the proof of the theorem is that it is possible to begin applying a left-focused proof

step even if the guiding atom is not yet present and perform the appropriate right rules

to introduce the needed atom only when it is needed for the application of axiom rules.

The previous lemma is used to argue that it is complete to ignore proofs which do this,

as there will always exist a proof of the same sequent which introduces atoms before de-

composing program clauses.

The following proof is an example of this. Note that the proof decomposes a program

clause even though both atoms in its head are absent as goals.

q ` q
q ` q � r

��R

....
` G

G( q ` q � r
( �L

However there exists a proof which begins by introducing the atom q and only then (when

both atoms in the clause’s head are present as goals) applies left rules to the program
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clause.

q ` q

....
` G

G( q ` q
( �L

G( q ` q � r
��R

DEFINITION 25

The formula F occurs negatively in F ( G and in F?. Intuitively a sub-formula occurs

negatively if it can be transferred across the turnstile in the course of a proof construction.

For example, in the sequent p ( q ` q N (r � s)? the formulae p and r � s occur

negatively.

THEOREM 61

Let � be a multiset of formulae of the form !8x(G ( (A1 O : : : O An)). Let � be a

multiset of formulae where all negatively occurring formulae are of the appropriate form

(!8x(G ( (A1 O : : :O An))). Then the sequent � ` � has a proof where each sequent

in the proof is either the conclusion of a right rule or is the conclusion of a left-focused

proof.

Proof: Observe that the connectives 8 , ! ,( and O are synchronous when they occur

on the left. Thus by an application of the focusing property [6] we can apply the left rules

decomposing a program clause as an indivisible group of inferences without any loss of

completeness. We shall refer to this sequence of inferences as a left–focused proof step

or proof step.

A left-focused proof step satisfies most of the requirements of a left-focused proof.

We only need to show that it either fails or eliminates the relevant goals.

Firstly, we show that if the Ai are present then the proof step eliminates them. Given

the sequent � ` �, if fA1 : : : Ang � � then the proof step using the program clause

!8x(G ( (A1 O : : : O An)) is left-focused - that is, it eliminates the Ai. The proof

involved is the following where we let P represent !8x(G ( (A1 O : : :O An));�
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A1 ` A1 : : : An ` An

A1 O : : :O An ` A1; : : : ; An
O� L

....
P ` G;�

G ( (A1 O : : :O An);P ` A1; : : : ; An;�
( �L

8x(G ( (A1 O : : :O An));P ` A1; : : : ; An;�
8 � L

!8x(G ( (A1 O : : :O An));P ` A1; : : : ; An;�
!� L

P ` A1; : : : ; An;�
C!� L

We now need to show that without a loss of completeness we can limit the proof search

process so left rules are only applied when the appropriate atomic goals are present. That

is, if there is a proof of a sequent which begins with a left-focused proof step where the

relevant atomic goals are not all present then there exists another proof where the relevant

atomic goals are introduced before the left-focused proof step is performed.

We call an application of a left-focused proof step premature when some of the rele-

vant atomic goals are absent. The general case for a premature application of a proof step

is the following (�0), where we assume without loss of generality that the atom missing

is A1:
....

A1 ` �0 A2 ` A2 : : : An ` An

A1 O : : :O An ` �0; A2; : : : ; An
O� L

....
P ` G;�

G ( (A1 O : : :O An);P ` A2; : : : ; An;�
( �L

8x(G ( (A1 O : : :O An));P ` �0; A2; : : : ; An;�
8 � L

!8x(G ( (A1 O : : :O An));P ` �0; A2; : : : ; An;�
!� L

P ` �0; A2; : : : ; An;�
C!� L

....

Observe that A1 ` �0 must be provable. According to lemma 60, if it is provable then

there exists an incomplete proof of the sequent P ` �0; A2; : : : ; An;� of the following

form

� � �.... : : :P ` A1; A2; : : : ; An;� : : :

� � �....
....

P ` �0; A2; : : : ; An;�
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However the open node of this proof is the root of the desired proof. Hence we can extend

this proof as follows

� � �.... : : :

A1 ` A1 : : : An ` An

A1 O : : :O An ` A1; : : : ; An
O� L

....
P ` G;�

G ( (A1 O : : :O An);P ` A1; : : : ; An;�
( �L

8x(G ( (A1 O : : :O An));P ` A1; : : : ; An;�
8 � L

!8x(G ( (A1 O : : :O An));P ` A1; : : : ; An;�
!� L

P ` A1; : : : ; An;�
C!� L

: : :

� � �....
....

P ` �0; A2; : : : ; An;�

Thus delaying the application of left-focused proof steps until all of the required atoms

are present preserves completeness. Furthermore, the proof step produces a left-focused

proof as desired. �

3.6.1 ACL

ACL (Asynchronous Communication based on Linear logic) [85] has the flavour of a

concurrent extension to an ML-like functional language. The concurrent extensions are

based on linear logic. From our point of view we can view the language as having the

logical syntax11

D ::= !8x(G( Ap)

G ::= ? j > j Am j?Am j Ap j G O G j G N G j 8xG j R

R ::= 9x(A?

m 
 : : :
 A?

m 
 G) j R � R

where Am is a message predicate and Ap a program predicate. ACL satisfies some, but

not all of the criteria.

11Note that, unlike the technical report version of this chapter [151] we are using the extended version

of ACL on page 285 of [85] which includes quantifiers.
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PROPOSITION 62

ACL fails to satisfy criterion Cstrong.

Proof: Consider the sequent ` 9x(p(x)? 
>); p(1)N p(2). This sequent is provable:

` p(1)?; p(1)
Ax

` >
> � R

` p(1)? 
>; p(1)

� R

` 9x(p(x)? 
>); p(1)
9 � R

` p(2)?; p(2)
Ax

` >
> �R

` p(2)? 
>; p(2)

�R

` 9x(p(x)? 
>); p(2)
9 � R

` 9x(p(x)? 
>); p(1)N p(2)
N� R

However, there is no proof which begins with an 9 � R rule since t cannot be simulta-

neously both 1 and 2:

` p(t)?; p(1) ` >
> � R

` p(t)? 
>; p(1)

� R

` p(t)? 
>; p(1)N p(2)
N�R

` p(t)?; p(2) ` >
> �R

` p(t)? 
>; p(2)

�R

` 9x(p(x)? 
>); p(1)N p(2)
9 � R

Thus ACL fails to satisfy criterion Cstrong. �

COROLLARY:ACL fails to satisfy criterion DA.

PROPOSITION 63

ACL satisfies criterion B.

Proof: Simple induction argument. The class of program formulae is too limited to allow

for a proof of � `. �

PROPOSITION 64

ACL satisfies criterion DS .

Proof: According to theorem 61, ACL proofs can be restricted to left-focused proofs

without a loss of completeness. Consider now a proof of a sequent of the form � ` C.

Since there are no atoms, we know that the sequent cannot be the result of left rules or

the axiom rule and thus it must be the result of a right rule. �

COROLLARY:ACL satisfies criteria A and C.
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3.6.2 LO

LO (Linear Objects) [10] is one of the earlier languages based on linear logic. It is moti-

vated by a desire to add concurrency and object-oriented features to logic programming.

Its syntax is given by the BNF:

D ::= !8x(G( A1 O : : :O An)

G ::= A j > j G N G j G O G

PROPOSITION 65

LO satisfies DA.

Proof: All of the connectives used in goals are asynchronous, and so given any goal in a

sequent we can permute the rule decomposing that goal to the bottom of the proof, hence

the first condition of criterion DA is satisfied. Furthermore according to theorem 61, LO

proofs satisfy the left-focusing condition. �

COROLLARY:LO satisfies DS , C , A and Cstrong.

PROPOSITION 66

LO satisfies B.

Proof: Simple induction as for ACL. �

3.6.3 LC

The languageLC (Linear Chemistry) [140] is based on a similar proof theoretical analysis

to Lolli and Lygon. It is designed to satisfy criterion DA. Its choice of connectives is

interesting. Note that LC does not use any binary rules and thus its proofs are “sticks”

rather than trees.

D ::= !8x(G( A1 O : : :O An)

G ::= A j 1�? j > j G O G j G � G j 9xG

PROPOSITION 67

LC satisfies criteria B and A.

Proof: Obvious for criterion A and simple induction for criterion B. �
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PROPOSITION 68

LC satisfies criterion DA.

Proof: LC satisfies the left-focusing condition according to theorem 61. Observe that all

of the connectives used in goals are relatively asynchronous. �

COROLLARY:LC satisfies criteria DS , C and Cstrong.

As figure 3.6 indicates, the languages proposed fall into three groups:

1. Those which satisfy criterion DA: LO and LC.

2. Those which satisfy criterion DS but not DA: ACL.

3. Those languages which allow program clauses of the form G( ? and hence fail

most of the criteria: Forum and Lygon.

In figure 3.6 the entries in brackets indicate that the result is due to a technicality and

would otherwise be different.

Figure 3.6 Summary of Multiple Conclusioned Languages and Criteria

Language A B C Cstrong DA DS

ACL ✓ ✓ ✓ ✗ ✗ ✓

LO ✓ ✓ ✓ ✓ ✓ ✓

LC ✓ ✓ ✓ ✓ ✓ ✓

Forum ✓ ✗ ✗ ✗ ✗ ✗

Forum� ✓ ✗ (✓) (✓) ✓ ✓

Lygon ✓ ✗ ✗ ✗ ✗ ✗

Lygon? ✓ ✓ ✓ ✗ ✗ (✗)

Lygon� ✓ ✓ ✓ ✗ ✗ ✓

Lygon2 (section 3.11) ✓ ✓ ✓ ✗ ✗ ✓
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3.7 Forum

Forum [109] is intended more as a specification language than as a programming lan-

guage. It is interesting in that it consists entirely of asynchronous connectives (in goals)

and the same class of formulae in programs.

D ::= G

G ::= A j G O G j G N G j G ( G j G ) 12G j > j ? j 8xG

We begin by considering Forum as the class of formulae above extended using logical

equivalences to cover all of linear logic as is done in [106].

PROPOSITION 69

Forum satisfies criteria A.

Proof: Linear logic does not have generally applicable right structural rules. �

PROPOSITION 70

Forum fails to satisfy criterion B.

Proof: The proof of the sequent ? ` violates criterion B. �

PROPOSITION 71

Forum fails to satisfy criterion C.

Proof: Consider the following derivation:

p(a) ` p(a)

p(a) ` 9xp(x)
9 �R

` p(a)?; 9xp(x)
�? � R

p(b) ` p(b)

p(b) ` 9xp(x)
9 �R

` p(b)?; 9xp(x)
�? �R

` p(a)? N p(b)?; 9xp(x)
N� R

(p(a)? N p(b)?)
?

` 9xp(x)
�? � L

(this is the example given in section 3.1). �

COROLLARY:Forum fails to satisfy criteria DA , DS and Cstrong

Forum fails most of the tests when considered in conjunction with logical equiva-

lences. We consider Forum in conjunction with logical equivalences because that is the

12a) b � (!a)( b
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approach followed by Forum’s designers in [106, 109, 111]. We now consider Forum as

it stands, without extension. We shall call this language Forum� .

LEMMA 72

Forum� satisfies criterion A.

Proof: Trivial, since linear logic does not provide generally applicable right structural

rules. �

PROPOSITION 73

Forum� fails to satisfy criterion B.

Proof: ? is a legal Forum� program which when given the goal ? has the following

proof:

? `
? � L

? ` ?
?� R

which violates criterion B. �

In the following, when we say that “the proof fails” we mean that it can not be com-

pleted with an axiom rule. In general, it may be possible to complete the proof step using

other program clauses. However, once we have chosen to decompose a given program

clause, lemma 74 (below) allows us to insist that the decomposing proof step terminate

with an axiom rule where the program clause reduces to an atom. Hence we can ignore

possible completions of the proof step which involve other program clauses without a

loss of completeness.

In order to prove the next proposition we shall need to define a notion of matching.

We can then reason as follows:

1. If the atoms do not match the clause then a proof step focusing on the clause must

fail.

2. If the atoms match the clause then a proof step focusing on the clause either fails

or eliminates the relevant atoms.

However we begin with a useful lemma.
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LEMMA 74

Let � and � be respectively multisets of Forum� program clauses and goal formulae

such that � ` � is provable. Then there exists a proof of � ` � where all left rules are

part of a sequence which decomposes a single clause.

Proof: Observe that all of the left inference rules which are applicable in Forum� derivations

are synchronous. Hence according to the focusing property [6] once we have applied a

left rule to a program formula we can continue to decompose that formula without a loss

of completeness. Furthermore, as observed in [6]:

When a negative atomA? is reached at the end of a critical focusing section,

the Identity must be used, so that A must be found in the rest of the sequent,

either as a restricted resource : : : or as an unrestricted resource : : :

Thus, once a program clause is decomposed to an atom on the left there is no loss of

completeness in requiring that the next rule be the axiom rule. �

In the following we let F be the selected program clause andA a multiset of atomic

goals. Note that here we are matching a program clause with a number of atoms.

DEFINITION 26

The multiset of atomsA matches the Forum� program clause F iff

� F is atomic,A consists of the single formula A and A = F .

� F = ? and A is empty.

� F = F1OF2,A = A1[A2 and we have thatA1 matches F1 andA2 matches F2.

� F = F1 N F2 and A matches at least one of the Fi

� F = G( F 0 and A matches F 0

� F = G) F 0 and A matches F 0

� F = 8xF 0 and A matches F 0
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LEMMA 75

Consider a proof step which decomposes the Forum� program clause F in the sequent

�; F ` A;� where A is a multiset of atomic formulae. If A matches F then the proof

step either eliminates A or fails; otherwise, if F does not match A then the proof step

fails.

Proof: We proceed by induction on the structure of F . There are a number of possible

cases:

� F is atomic: Without a loss of completeness (lemma 74) the sequent must be the

conclusion of an axiom rule. If F matches A then the multiset actually contains

a single atom A and the axiom rule will eliminate A or fail (if there are excess

formulae). If F does not match A then either F does not equal A or A contains

the wrong number of atoms. In either case the axiom rule cannot be applied.

� F = >: F can not match A and since there is no left rule, the proof fails.

� F = ?: If F matches A then A is empty and it can be considered as consumed

so this case is trivially satisfied. If F does not matchA then it must be non empty

and hence the ?� L rule cannot be applied and the proof fails.

� F = F1 N F2: If F matches A then without loss of generality let A match F1

and not match F2. Then by the induction hypothesis the proof which uses the left

N rule to select F1 either eliminates A or fails. Since A does not match F2 the

proof which uses N to select F2 fails. If it fails then so does the whole proof, if it

consumes A then so does the conclusion. If F does not match A then A matches

neither F1 nor F2 and by induction the premise of theN� L rule fails.

� F = G( F 0: The relevant rule is:

�0; F 0 ` A � ` G;�

�;�0; G( F 0 ` A;�
( �L

Note that F matches A iff F 0 matches A. By the induction hypothesis, the left

premise of the proof either fails or consumes A if F matchesA. By the induction

hypothesis, the left premise fails if F does not match A.
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� F = F1 O F2: The relevant rule is

�; F1 ` A1;� �0; F2 ` A2;�
0

�;�0; F1 O F2 ` A1;A2;�;�
0
O� L

F matches A:

By the induction hypothesis both of the premises match and either eliminate their

Ai or fail. If both eliminate their Ai then so does the whole proof. If either fails

then so does the whole proof. If we choose to split A such that an Ai does not

match Fi then the proof will fail.

F does not match A:

By the induction hypothesis at least one of the premises fails to match and hence

the proof fails.

The remaining cases are analogous. �

PROPOSITION 76

Forum� satisfies criterion DA.

Proof: The first condition follows since all of the right rules that are applicable are re-

versible. Consider now the proof of sequents of the form � ` A. We assume the sequent

has a proof. If this proof is simply an application of the axiom inference then the proof

satisfies DA and we are done. Otherwise the proof begins by applying a left rule to some

formulae F 2 �. According to lemma 74 there exists a proof which begins by com-

pletely decomposing F . Since we know that this proof is successful we have by lemma

75 that F must match some sub-multiset ofA and furthermore that the left-focused proof

step which decomposes F must eliminate this sub-multiset. Thus Forum� satisfies the

left-focusing condition and hence satisfies DA. �

COROLLARY:Forum� satisfies criteria DS , C and Cstrong.

So Forum� satisfies most of the criteria. As we shall see in section 6.1 there are still

problems associated with allowing ? to occur in the head of a clause.

3.8 Lygon

Lygon is derived by a systematic analysis. In terms of the class of formulae permitted
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it is the most general of the languages considered:

D ::= A j 1 j ? j D ND j D 
 D j G ( A j G? j 8xD j!D j D OD

G ::= A j 1 j ? j > j G
G j G�G j GOG j GNG j D( G j D? j 8xG j 9xG j!G j?G

PROPOSITION 77

Lygon satisfies criterion A.

Proof: Obvious, since linear logic does not have weakening or contraction right. �

PROPOSITION 78

Lygon fails to satisfy criterion B.

Proof: The sequent ? ` ? consists of a valid Lygon program and goal and its proof

necessarily involves a sub-proof with an empty goal. �

PROPOSITION 79

Lygon fails to satisfy criterion C.

Proof: Consider the Lygon program (p(1)? N p(2)?)
?

and the goal 9xp(x). According

to criterion C we can begin the proof by applying 9-R; however, this fails since t cannot

be both 1 and 2 simultaneously.

p(1) ` p(t)

` p(1)?; p(t)

p(2) ` p(t)

` p(2)?; p(t)

` p(1)? N p(2)?; p(t)

(p(1)? N p(2)?)
?

` p(t)

(p(1)? N p(2)?)
?

` 9xp(x)
9 � R

This sequent is provable however:

p(1) ` p(1)

` p(1)?; p(1)

` p(1)?; 9xp(x)

p(2) ` p(2)

` p(2)?; p(2)

` p(2)?; 9xp(x)

` p(1)? N p(2)?; 9xp(x)

(p(1)? N p(2)?)
?

` 9xp(x)

Hence Lygon violates criterion C. �

COROLLARY:Lygon violates criteria Cstrong, DS and DA.
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Thus Lygon fails most of our criteria! Lygon allows program clauses to be of the form

G? (encoded as G ( ?). The problem is that such clauses can be resolved against at

anytime; there is no requirement that a particular goal be present. As is pointed out on

page 34, allowing program clauses that can be resolved against without being invoked

explicitly by a goal causes problems. Specifically, a number of desirable properties of

logic programming languages (for instance that � ` 9xF is provable if and only if � `

F [t=x] is provable for some t) are violated as a result.

We shall therefore consider a variant of Lygon - Lygon? - which differs from Lygon

in that it removes the production D ::= ? j G?. We will also consider Lygon� which

has a limited notion of program clause corresponding to the BNF:

D ::= !8x(G ( A) j A

Lygon� also omits the possibility for controlled weakening and contraction of goals which

is afforded by formulae of the form ?G.

G ::= A j 1 j ? j > j G 
 G j G � G j G O G j G N G j D( G j D? j 8xG j 9xG j!G

As discussed earlier it is possible to make proofs containing replication and deletion of

such formulae acceptable with a slight modification to the definition of DS . Lygon� is

closest to the current Lygon implementation [146, 147] (see also section 5.1).

PROPOSITION 80

Lygon? and Lygon� satisfy criteria A.

Proof: Obvious. �

PROPOSITION 81

Lygon? satisfies criterion B.

Proof: Proof by induction. In order to be a provable axiom, a sequent must have a non-

empty goal - since Lygon? programs cannot contain 0 or ?. Each of the applicable

left rules satisfies the condition that if the conclusion has an empty goal then so does

a premise. �

PROPOSITION 82

Lygon� satisfies criterion B.

Proof: Simple induction. �
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PROPOSITION 83

Lygon? and Lygon� fail to satisfy criterion Cstrong.

Proof: Consider the sequent ` 9xp(x); 8x(p(x)( ?). �

COROLLARY:Lygon? and Lygon� fail to satisfy criterion DA.

PROPOSITION 84

Lygon� satisfies criterion DS .

Proof: According to theorem 61, Lygon� satisfies the left-focusing restriction. Observe

that the proof of a sequent of the form � ` C cannot begin with an Ax or left rule since

there are no atoms to guide the proof step. Hence, all sequents of the form � ` C are the

conclusion of a right rule. �

COROLLARY:Lygon� satisfies criterion C.

PROPOSITION 85

Lygon? satisfies criterion C.

Proof: We need to show that for � consisting of valid Lygon program clauses and 9xF a

valid Lygon goal the sequent � ` 9xF is provable if and only if the sequent � ` F [t=x]

is provable.

The only rules which can occur in a Lygon derivation and which do not permute up

past 9 � R are N � R and 8 � R. Since the sequent we are considering for criterion C

does not have any other goals (that is, the succedent is a singleton multiset) we only need

to argue that the following scenarios cannot occur

....
� ` pN q; 9xF

....
�0; r `

(pN q)( r;�;�0 ` 9xF
( �L

....
� ` 8xF 0; 9xF

....
�0; r `

(8F 0)( r;�;�0 ` 9xF
( �L

Since Lygon? satisfies criterion B the right premise cannot be proven and hence this

scenario is impossible. Therefore, we can permute the 9�R rule down to the bottom of

the proof and thus � ` 9xF is provable if and only if � ` F [t=x] is provable as desired.

�

PROPOSITION 86

Lygon? fails criterion DS .

Proof: The sequent a 
 b ` a 
 b comprises a valid Lygon? program and a valid
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Lygon? goal. It can only be proven by applying
�L first. Since the goal is compound

this violates criterion DS. �

This is symptomatic of the fact that DS is a generalisation of uniformity and that the

notion of simple locally LR used in Lygon (see [122] is not uniformity. The differences

are minor and relate to the following impermutabilities

� 
 � R above 
� L

� 
 � R above C!� L

� 1� R above 1� L or W !� L

� !�R above most left rules

The second and third of these are standard and are easily solved by introducing a “non-

linear” region into the rules as is done in L (figure 2.6 on page 13).

Thus with respect to the sequent rules for linear logic given in figure 2.4, Lygon is

not uniform; however, if as programmers we are prepared to think in terms of a slightly

different set of rules where, for example,
-R can apply simple preprocessing to the left-

hand side of the sequent then Lygon regains its uniformity.

We invite the reader to consult [122] for the details of the derivation and for the logical

rules involved.

3.9 ApplyingDA andDS to Classical Logic

All of the languages in the previous few sections have been based on linear logic. It is

interesting to consider applying our criteria (specifically DA and DS) to classical logic.

We begin by reviewing existing relevant work.

As far as we are aware there is little existing work which applies the idea of unifor-

mity to determine (in a proof theoretical manner) a logic programming language based

on classical logic.

In [55] the criteria Dall and Dsome (introduced in the next section) are used to derive

logic programming languages based on classical logic. The conclusions drawn in the

paper are that:
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1. Dsome does not produce any non-trivial languages that do not also satisfy Dall.

2. The following languages satisfy criterion Dall:

A:

D ::= A j 8xD j D ^ D j D _ D j :G j G ! D

G ::= A j 9xG j G ^ G j D _ G j :D j D ! G

B:

D ::= A j 8xD j D ^ D j :G j G ! D

G ::= A j 9xG j 8xG j G ^ G j D _ G

3. The languages A and B violate goal directedness in that they permit proofs where

the (atomic) goal is irrelevant.

“Thus it seems that the completeness of goal-directed provability is a

signpost rather than a definitive criterion in classical logic. For exam-

ple, when negations are allowed in programs, as in both existential-free

formulae and flat definite formulae, the goal may not be actually “rele-

vant” to the proof, such as in the sequent p;:p ` q. Whilst it is true that

this sequent has a right-reductive [i.e. � ` �; C is the conclusion of a

right rule] proof, it is clear that there is nothing about this proof that is

peculiar to q, and so it seems philosophically difficult to describe this

proof as goal-directed. Hence it would seem that stronger restrictions

than goal-directed [actually uniform] provability need to be placed on

the class of proofs in order to determine logic programming languages”

([55, last paragraph, section 5]).

A consequence of observation (3) is that A and B both fail to satisfy the left-focusing

condition and hence the languages fail to satisfy DA and DS .

In [114, 115] Nadathur and Loveland examine the application of uniformity to dis-

junctive logic programming. They conclude that for the language
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C:

D ::= A j 9xD j 8xD j D ^ D j D _ D j G ! D

G ::= A j 9xG j G ^ G j G _ G

the sequent � ` G has a classical proof if and only if the sequent :G;� ` G has a proof

in intuitionistic logic which is uniform.

It is simple to show that C fails most of our criteria. The proof of the sequent p(a)_

p(b) ` 9xp(x) violates all of our criteria except for criterion B.

The problem is that although there exists an efficient method of proof search for C, it

does not confirm to a uniform (as in goal directed) view of classical logic. As in the case

of Lygon we can view C as being uniform with respect to a different set of rules. In this

case the logic would require the rule

� ` F [t1=x]; : : : ; F [tn=x];�

� ` 9xF;�
90 � R

We shall return to the issue of modifying the underlying logic in section 3.12.

We now look at deriving a logic programming language based on classical logic using

criteria DA and DS .

Firstly consider DA. We require that all connectives that can occur topmost on the

right side of the sequent permute over each other. The only impermutability is 9 � R

which does not permute down past 8 �R, 9 � L and _ � L. Thus our language cannot

make use of these three rules if we retain 9�R. Additionally we have seen that allowing

D ::= :G causes problems. This gives us the following language, which we dub ALK

(Asynchronous language based on LK) (pronounced “elk”)

D ::= A j D ^ D j 8xD j G ! D

G ::= A j G ^ G j G _ G j 9xG j D ! G j :D

Note that the connectives which move formulae between sides have sub-formulae which

are appropriate for “other” side (e.g. G ::= D ! G j :D).
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Note that although the syntax is similar to hereditary Harrop formulae [54, 105] the

semantics is different since the proof rules are those of classical logic. For example, in-

tuitionistically, p _ (p! q) is unprovable but classically we have a proof:

p ` p
Ax

p ` p; q
W �R

` p; p! q
! �R

` p _ (p! q)
_ �R

Although the goal q is irrelevant the goal p is used to guide the proof. Thus the proof is

goal-directed at all times.

Observe that ALK is just A with the problematic production (D ::= :G) removed.

We begin by defining a notion of matching. In the following we let F be the selected

program clause and A an atomic goal.

DEFINITION 27

The atom A matches the ALK program clause F iff

� F is atomic and is equal to A.

� F = F1 ^ F2 and A matches at least one of the Fi

� F = G! F 0 and A matches F 0

� F = 8xF 0 and A matches F 0

LEMMA 87

Consider a proof step which decomposes the ALK program clauseF in the sequent�; F `

A;�whereA is atomic. IfAmatchesF then the proof step succeeds, eliminatingA; oth-

erwise, if F does not match A then the proof step fails.

Proof: Induction on the structure of F .

� F is atomic: If F matches A then the only relevant rule is the axiom rule which

succeeds, consuming A. If F does not match with A then the axiom rule cannot

be applied and the proof fails.
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� F = F1 ^ F2: If F matches A then without loss of generality let A match F1 and

not match F2. Then the premise of the ^ inference is �; F1; F2 ` A;� and by the

induction hypothesis its proof eliminatesA. If F does not matchA thenAmatches

neither F1 nor F2 and by induction the premise of the ^ � L rule fails.

� F = G! F 0: The relevant rule is:

�0; F 0 ` A � ` G

�;�0; G! F 0 ` A
! �L

If A matches F then it must match F 0 and hence by the induction hypothesis the

left premise is provable and hence A is eliminated. If A does not match F then it

also fails to match F 0 and hence by the induction hypothesis the left premise of the

inference fails.

The remaining case is analogous. �

PROPOSITION 88

The language ALK satisfies criterion DA.

Proof: All of the right connectives permute down, thus the first condition (that there exist

a proof where any sequent of the form � ` �; C (where C consists of compound formu-

lae) is the conclusion of a right rule) holds. The second condition of criterionDA follows

from lemma 87. �

COROLLARY:ALK also satisfies criteria DS , C, Cstrong and A.

We now consider applying DS in order to determine a logic programming language

based on classical logic. Obviously ALK satisfies DS. The interesting languages are

those which satisfy DS but not DA. Consider a language which satisfies DS. Accord-

ing to proposition 59 if all the right connectives permute then the language also satisfies

criterion DA. Hence, in order for the language to satisfy DS but not DA it must contain

an impermutable pair of right connectives. For classical logic the only non-permutable

pair of right connectives are 9 and 8. Additionally, we would like a useful language to

generalise Horn clauses. Thus, a minimal language which generalises Horn clauses and

satisfies DS but not DA is:

D ::= A j G ! A j 8xD G ::= A j G ^ G j 9xG j 8xG
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However, as the following proof demonstrates, even this language violates criteria

DA and DS

p(c) ` p(c)

p(c) ` p(c); q
W �R

p(c) ` 9xp(x); q
9 � R

` 9xp(x); p(c)! q
! �R

` 9xp(x); 8x(p(x)! q)
8 � R

p(3) ` p(3)

p(3) ` 9xp(x)
9 � R

(8x(p(x)! q))! p(3) ` 9xp(x)
! �L

The sequent (8x(p(x) ! q)) ! p(3) ` 9xp(x) is provable but there is no single value

of x for which it is provable. This violates criterion C (and hence criteria DA and DS

since DA  DS  C). By observation the language used in the proof is

D ::= A j G ! A G ::= A j 9xA j 8xA j A! A

Since we would like a logic programming language to generalise Horn clauses it follows

that we cannot have both 8 �R and! �R in the language and thus, since we desire to

have 8 �R, we must omit! �R from the language.

For the same reason we must also omit G ::= :D. As was the case for ALK we

cannot allow the proof to make use of the rules 9 � L, _ � L and : � L and hence we

have the following language which we dub SLK (Synchronous language based on LK)

(pronounced “silk”)

D ::= A j D ^ D j 8xD j G ! D

G ::= A j G ^ G j G _ G j 9xG j 8xG

This language however satisfies criterion DA!

That this should be case despite the possibility of applying both 9 �R and 8 �R is

explained by the following lemma.

LEMMA 89 (LEMMA 3 OF [55])

Let � and � be respectively a program and goal in SLK. Then � ` � is provable iff

� ` F is provable for some F 2 �.

What is happening is that the omission of! �R and : � R prevents the multiple

goals from interacting.
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Thus our results confirm those of [55] - there do not seem to be any interesting lan-

guages based on classical logic which satisfy DS but notDA. This should not be surpris-

ing - essentially what this says is that classical logic does not have any connectives which

are useful for a logic programmer and whose use is made difficult by impermutabilities.

More precisely, allowing 8 in goals and _ and 9 in programs does not appear to be useful

to a logic programmer.

3.10 Other Work

In this section we look at how this work ties in with previous work in uniformity and

the characterisation of logic programming languages. An important goal is to suggest a

common terminology.

As mentioned earlier the seminal work in this area is [112] where the original def-

inition of uniformity is presented. Since uniformity works reasonably well in a single

conclusion setting there has been little research on extending it until the need arose for a

multiple conclusion generalisation.

In the absence of a notion of atom-guided proof search, the options that have been

considered in order to extend uniformity to a multiple conclusion setting [55, 106, 140]

are:

Dall : For a sequent of the form � ` C;A or � ` C there exist proofs where the first step

introduces the topmost connective of F for all F 2 C.

Dsome : For a sequent of the form � ` C;A or � ` C there exist proofs where the first step

introduces the topmost connective of F for some F 2 C.

In the absence of a notion of atom-directed proof search it is not possible to allow res-

olution to occur while there are compound goals, and thus Dsome is not useful since, as

we have seen, allowing impermutable rules requires that we allow resolution to occur

before decomposition in certain cases. For example, the following proof necessarily vi-
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olates Dsome:

p ` p

q(c) ` q(c) r(c) ` r(c)

q(c)O r(c) ` q(c); r(c)
O� L

8x(q(x)O r(x)) ` q(c); r(c)
8 � L

8x(q(x)O r(x)) ` q(c); 9xr(x)
9 �R

8x(q(x)O r(x)) ` 8xq(x); 9xr(x)
8 �R

8x(q(x)O r(x)); (8xq(x))( p ` p; 9xr(x)
( �L

One solution is to disallow( �L; however this does not yield a useful logic program-

ming language. The obvious conclusion is that criterion Dsome is not useful. Indeed, in

the absence of any notion of atom-guided proof search, the only generalisation of unifor-

mity to the multiple conclusioned setting is Dall. As we have seen, however, introducing

a notion of atom-guided proof search allows a variant of Dsome – DS – to be useful.

PROPOSITION 90

DS 6 Dall

Proof: Obvious from definition. �

PROPOSITION 91

DA  Dall

Proof: Obvious from definition. �

PROPOSITION 92

Dall 6 DS , Dall 6 DA

Proof: The following proof satisfies Dall but violates DS and DA

` >; p q ` q
q ` q 
>; p

q; (q 
>)? ` p

Note that if we remove the second condition from DA (which simply states that DA

is guided by atoms where there are no compound goals) then we are left with Dall; that

is

DA = Dall + left-focusing
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Figure 3.7 Relationships for Multiple Conclusion Criteria
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3.10.1 Proposed Terminology

There has not been much work addressing the question of determining logic program-

ming languages. As a result terminology is not standard. In particular the word “Uni-

form” has been used for different definitions and this overloading can and has caused

confusion and mis-communication.

In this section we propose some terminology which avoids confusion. We would like

to suggest this terminology as a possible standard. One feature of this terminology is that

it distinguishes between single and multiple conclusion logics - the term “uniform” is

defined as a property of single conclusion systems only.

Goal Directed - This is an intuitive, informal notion that requires that the proof search

process be guided by the goal.

Uniform - This is the original definition in [112] which applies to single conclusion sys-

tems. It corresponds to criterion Dstrong.

Fully Uniform - Uniformity with the addition of left-focusing. Applies to single con-

clusion systems and corresponds to criterion F .

Simple - This is one method of insisting that atoms guide the proof search process. It is
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used in [107] and requires that the right premise of the( �L rule be the conclu-

sion of an axiom rule.

Left Focussed - This is another method of allowing atoms to guide the proof search pro-

cess.

Locally LR - This is the criterion used in [122] for defining Lygon. Although the pa-

per defines uniform as simple locally LR we feel that this overloading is unde-

sirable since the two concepts are distinct. The locally LR criterion is similar to

synchronous uniformity (see below) extended to handle a number of other imper-

mutabilities in linear logic (for example 
-L below 
-R).

Synchronous Uniformity - This criterion is one of the two generalisations of unifor-

mity to the multiple conclusion setting. It allows resolution to occur before de-

composition thus allowing impermutable goal connectives to co-exist in a logic

programming language. It corresponds to criterion DS .

Asynchronous Uniformity - This criterion is one of the two generalisations of unifor-

mity to the multiple conclusion setting. It insists that decomposition be given pri-

ority over resolution and as a consequence limits the language to use (relatively)

reversible connectives in goals. It corresponds to criterion DA.

3.11 Re-Deriving Lygon

As we have seen, the full Lygon language as presented in [122] fails most of the criteria

developed. We have introduced two subsets of Lygon – Lygon? and Lygon�. The first

still fails criterion DS; although the failure is not as severe. Lygon� satisfies all of the

appropriate criteria; however the class of program formulae permitted is rather impover-

ished.

In this section we informally but systematically derive an intermediate subset – Lygon2 –

which satisfies criteria B and DS and has a richer clause structure than Lygon� .

We shall assume that goals can contain, as a minimum, 
, !, O, 1 and 9. As we

shall see, the presence of 
 and ! in goals allows us to simplify the structure of program
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clauses. The connectiveO is essential for concurrency applications and 9 is basic to logic

programming.

We can rule out at the outset the use of the following left inference rules:13

- 9 and �. Both of the following sequents only have a proof which begins with a

left rule, this violates criterion DS .

p(1)� p(2) ` 9xp(x) 9xp(x) ` 9xp(x)

- 
. As we have seen, the sequent p 
 q ` p 
 q presents a problem to uniform

provability.

- ?. There are two cases here. If ? is allowed in goals then the sequent ?p `?p vio-

lates criterion DS . Otherwise observe that the left ? rule can only be applied when

the goal is empty so the formula is either useless or involves an empty goal which

violates criterion B.

- 0. The sequent 0 ` 1 has a single proof which applies a left rule. Since 1 is not

an atom this proof is (technically) not uniform. In general allowing 0 � L to be

used seems to go against the idea of logic programming in that the goal becomes

irrelevant – any goal can be proven using 0� L.

- ? directly violates criterion B.

- 1. In the sequent pN 1 `!1 the ! rule on the right cannot be applied until the 1 on

the left is eliminated using its rule.

Additionally, we cannot have nested occurrences of ! in programs – occurrences of !

must be at the top level. The problem with nested occurrences of ! is that the right ! and


 rules require that all occurrences of ! be at the top level (in the case of the 
 rule we

need to copy all non-linear formulae). If an occurrence of ! on the left is in a sub-formula

then we may need to apply left rules to expose it before being able to apply a right rule.

13Note that we are ruling out left inference rules. The connectives in question can occur in programs,

but they must occur in a negative context. For example, the program clause p  9x(q � r) offers no

difficulties to uniform provability.
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For example, observe that a proof of the sequent qN!p ` p
 p exists (the right proof

below) but that if we begin by applying the right rule – as required by criterionDS – then

no proof can be found.

p ` p Ax

!p ` p
!� L

qN!p ` p
N� L

p
qN!p ` p
 p


�R

....
!p ` p

....
!p ` p

!p; !p ` p
 p

� R

!p ` p
 p
C!� L

qN!p ` p
 p
N� L

Note that we could have used almost any left connective in place of N.

This yields the following definition for Lygon2 :

G ::= A j 1 j ? j > j G
G j G�G j GOG j GNG j D( G j D?14 j 8xG j 9xG j!G j?G

D ::= !Dn j Dl

Dn ::= A j Dn ODn j Dn NDn j 8Dn j G ( Dn

Dl ::= > j A j Dl ODl j Dl NDl j 8xDl j G ( Dl

We now proceed to demonstrate how the form of non-linear clauses can be simplified

without a loss of expressiveness.

Observe that the program clauses allowed in Lygon2 are a subset of the Forum class

of program clauses15. As is observed in [106] there exists the following normal form for

Forum program clauses:

D ::= !(C1 N : : :N Cn) j (C1 N : : :N Cn)

C ::= 8x(G # : : :# (G # (A1 O : : :O An)))

where# is one of) or(. We can rewrite this by expanding F ) G as (!F )( G to

C ::= 8x(G 0( : : :( (G 0( (A1 O : : :O An)))

14This is a special case of D( G.
15The two classes of formula are almost identical – the main difference is the absence of ? in the

Lygon2 class.
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G 0 ::= G j !G

Since Lygon2 goals allow both 
 and ! we can use the following equivalence to replace

nested implications with occurrences of 
 in goals.

G 0( : : :( (G 0( (A1 O : : :O An)) � (G 0 
 : : :
 G 0)( (A1 O : : :O An)

Thus we have the following normal form for Lygon2 program clauses

D ::= !(C1 N : : :N Cn) j (C1 N : : :N Cn)

C ::= 8x(G ( (A1 O : : :O An))

Since !(C1N : : :NCn) � (!C1)
 : : :
 (!Cn) we can replace nonlinear occurrences

of C1 N : : :N Cn with n separate clauses.

D ::= (C1 N : : :N Cn) j !C

C ::= 8x(G ( (A1 O : : :O An))

Note that unlike Forum we insist that n > 0, that is we do not allow program clauses of

the form G ( ?.

So, we can define Lygon2 as consisting of the following class of formulae:

D ::= (C1 N : : :N Cn) j !C

C ::= 8x(G ( (A1 O : : :O An))

G ::= A j 1 j ? j > j G
G j G�G j GOG j GNG j D( G j D?16 j 8xG j 9xG j!G j?G

We now proceed to prove that Lygon2 satisfies criteria DS and B.

LEMMA 93

Let � and� be respectively multisets of Lygon2 program clauses and goal formulae such

that � ` � is provable. Then there exists a proof of � ` � where all left rules are part

of a sequence which decomposes a single clause.

Proof: Observe that all of the left inference rules which are applicable in Lygon2 derivations

are synchronous. Hence according to the focusing property [6] once we have applied a

left rule to a program formula we can continue to decompose that formula without a loss

of completeness. Furthermore, as observed in [6]:
16This is a special case of D( G.
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When a negative atomA? is reached at the end of a critical focusing section,

the Identity must be used, so that A must be found in the rest of the sequent,

either as a restricted resource : : : or as an unrestricted resource : : :

Thus, once a program clause is decomposed to an atom on the left there is no loss of

completeness in requiring that the next rule be the axiom rule. �

In the following lemma we let F be the selected program clause andA a multiset of

atomic goals. Note that here we are matching a program clause with a number of atoms.

DEFINITION 28

The multiset of atomsA matches the Lygon2 program clause F iff

� F is atomic,A consists of the single formula A and A = F .

� F = F1OF2,A = A1[A2 and we have thatA1 matches F1 andA2 matches F2.

� F = F1 N F2 and A matches at least one of the Fi

� F = G( F 0 and A matches F 0

� F = 8xF 0 and A matches F 0

� F =!F 0 and A matches F 0

For example the program clause !8x(G ( (A1O : : :OAn)) is matched precisely by

the multiset fA1; : : : ; Ang.

In the following, when we say that “the proof fails” we mean that it can not be com-

pleted with an axiom rule. In general, it may be possible to complete the proof step using

other program clauses. However, once we have chosen to decompose a given program

clause, lemma 93 allows us to insist that the decomposing proof step terminate with an

axiom rule where the program clause reduces to an atom. Hence we can ignore possi-

ble completions of the proof step which involve other program clauses without a loss of

completeness.

LEMMA 94

Consider a proof step which decomposes the Lygon2 program clause F in the sequent

�; F ` A;� where A consists of atomic formulae. If A matches F then the proof step
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either eliminatesA or fails; otherwise, if F does not match A then the proof step fails.

Proof: We proceed by induction on the structure of F . There are a number of possible

cases:

� F is atomic: Without a loss of completeness (lemma 93) the sequent must be the

conclusion of an axiom rule. If F matchesA then the multiset actually contains a

single atom A and the axiom rule either fails due to extraneous formulae or elimi-

nates A. If F does not match A then either F does not equal A or A contains the

wrong number of atoms. In either case the axiom rule cannot be applied.

� F = F1 N F2: If F matches A then without loss of generality let A match F1

and not match F2. Then by the induction hypothesis, the proof which uses the left

N rule to select F1 either eliminates A or fails. Since A does not match F2 the

proof which uses N to select F2 fails. If it fails then so does the whole proof, if it

consumes A then so does the conclusion. If F does not match A then A matches

neither F1 nor F2 and by induction the premise of the N� L rule fails.

� F = G( F 0: The relevant rule is:

�0; F 0 ` A � ` G;�

�;�0; G( F 0 ` A;�
( �L

Note that F matches A iff F 0 matches A. By the induction hypothesis the left

premise of the proof either fails or consumes A if F matchesA. By the induction

hypothesis the left premise fails if F does not match A.

� F = F1 O F2: The relevant rule is

�; F1 ` A1;� �0; F2 ` A2;�
0

�;�0; F1 O F2 ` A1;A2;�;�
0 O� L

F matches A:

By the induction hypothesis both of the premises match and either eliminate their

Ai or fail. If both eliminate their Ai then so does the whole proof. If either fails

then so does the whole proof. If we choose to split A such that an Ai does not

match Fi then the proof will fail.
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F does not match A:

By the induction hypothesis at least one of the premises fails to match and hence

the proof fails.

The remaining cases are analogous. �

THEOREM 95

Lygon2 satisfies criterion DS .

Proof: Let � and � be respectively multisets of Lygon2 program clauses and goal for-

mulae such that � ` � is provable. Consider the proof of the sequent � ` �. There are

three cases depending on which inference rule the sequent is the conclusion of.

Case 1: The sequent is the conclusion of an axiom rule. In this case the proof satisfies

criterion DS.

Case 2: The sequent is the conclusion of a right rule. In this case the proof satisfies cri-

terion DS .

Case 3: The sequent is the conclusion of a left rule. The left rule is applied to some for-

mula F 2 �. According to lemma 93 there exists a proof which decomposes F using a

left-focused proof step. Since the sequent is provable we have by lemma 94 that F must

match some sub-multiset of atoms A � � and furthermore that the left-focused proof

step decomposing F eliminates A. Thus the second condition of DS is satisfied. Con-

sider now the proof of a sequent of the form � ` C where C contains only compound

formulae. We know that limiting the proof search process to using left-focussed proof

steps does not lose completeness. Since a left-focused proof step cannot be successfully

performed when the goal does not contain any atoms, we have that a Lygon2 goal not

containing any atomic formulae is provable if and only if there is a proof which begins

with a right rule. �

COROLLARY:Lygon2 satisfies criteria A and C.

THEOREM 96

Lygon2 satisfies criterion B.

Proof: The only left rules that can occur in a proof of a Lygon2 program and goal are: !,

8, O,( and N. In each of these rules, if the premise of the rule has an empty goal then

so does at least one premise. The only rules with no premises which allow an empty goal
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are ?� L and 0� L, and neither of these can occur in a Lygon2 program. �

We compare Lygon2 to other linear logic programming languages in chapter 6.

3.12 Discussion

We have seen how a variety of criteria for characterising logic programming languages

relate to each other and how they apply to a range of logic programming languages which

have been proposed.

The four major conclusions that can be drawn from this chapter are that:

1. Logical equivalence can be abused.

2. Uniformity is a promising start, but it suffers (particularly in the multiple conclu-

sion setting) from not having atomic goals guide the proof search process.

3. For the single conclusion setting, full uniformity presents an improvement over uni-

formity.

4. For multiple conclusion logics both synchronous and asynchronous uniformity are

useful as characterisers. The former yields richer languages and the latter yields a

permutable set of connectives.

The recognition of the need for atomic goals to guide the proof search and the intro-

duction of left-focused proof steps as a mechanism for achieving this are the key con-

tributions of this chapter. The introduction of left-focused proof steps is a crucial step

which allows the definition of a working version of synchronous uniformity.

In section 3.1 we identified four problems which uniformity suffers from:

1. It is defined for single conclusioned systems.

2. It is sensitive to the presentation of the logic.

3. It does not constrain the proof of sequents with atomic goals.

4. It allows for the abuse of logical equivalence.
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Our proposed criteria solve the first and third problems. The abuse of logical equiva-

lences remains a problem – since it is applied after a criterion has been used to derive a

logic programming language we need to consider the larger picture in order to be able

avoid this problem.

Sensitivity to the presentation of the logic is in general a problem (and we discuss

it further in section 3.12). However, the extreme case of one sided presentations can

be handled. If we do not allow ? headed clauses (and note that criteria DS excludes

? headed clauses (see page 64)) then the definition of left focusing can insist that A be

non-empty. This prevents the use of a one sided presentation which only uses left rules.

Additionally, criteria DA does not allow the use of a one sided presentation which

only uses right rules. For example, consider the program and goal q( p; 1( (qOr) `

pO r. This sequent is provable in a way which satisfies DA:

p ` p
Ax

q ` q
Ax

r ` r
Ax

q O r ` q; r
O� L

` 1 1

1( (q O r) ` q; r
( �L

q( p; 1( (q O r) ` p; r
( �L

q( p; 1( (q O r) ` pO r
O� R

Consider now the one-sided translation of the sequent which is ` pOr; p?
q; 1
r?
q?.

This sequent is provable, but criterion DA requires that for any goal formula F there is

a proof which begins by introducing the topmost connective of F . This is not the case:

` p?; pO r ` q; 1
 r? 
 q?

` pO r; p? 
 q; 1
 r? 
 q?



No matter how we distribute the formulae between the two premises of the
 rule, a proof

is not possible. Thus criterion DA avoids the problem of one sided presentations being

trivially logic programming languages.

There is another more general approach to dealing with one sided presentations. Both

criteriaDA andDS require that proofs of atomic goals are left-focused. This is essentially

just resolution and in order to apply it we need to be able to distinguish between programs

and goals. Note that DS allows impermutabilities between goals, and so it is possible to

view a one sided presentation as consisting entirely of goals. This implies that there is no
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program - the notion of a program is coded in terms of goals. From an operational point of

view a program clause is passive and is only “activated” when the appropriate atomic goal

is present. Encoding program clauses as goals makes them active and allows for more

proofs. In the example above the two sided proof given is the only one which satisfies

DA (or DS). On the other hand the one sided presentation which encodes programs as

goals allows for a number of different proofs which all satisfy DS (but not DA):

` p; p?
Ax

` 1 1
` r; r?

Ax
` q; q?

Ax

` q; r; r? 
 q?



` r; q; 1
 r? 
 q?



` p; r; p? 
 q; 1
 r? 
 q?



` pO r; p? 
 q; 1
 r? 
 q?
O

` 1 1
` p; p?

Ax
` r; r?

Ax
` q; q?

Ax

` r; q; r? 
 q?



` p; r; p? 
 q; r? 
 q?



` p; r; p? 
 q; 1
 r? 
 q?



` pO r; p? 
 q; 1
 r? 
 q?
O

` 1 1
` r; r?

Ax
` p; p?

Ax
` q; q?

Ax

` p; p? 
 q; q?



` p; r; p? 
 q; r? 
 q?



` p; r; p? 
 q; 1
 r? 
 q?



` pO r; p? 
 q; 1
 r? 
 q?
O

In a sense having only goals is an explicit request from the programmer for a different

semantics. Having the system transform the program and goal to a one-sided presenta-

tion is akin to the abuse of logical equivalences in that the semantics of the program can

be changed – in this case the search space becomes larger which can lead to reduced ef-

ficiency, certain solutions being found later (and possibly not at all) etc.

As we have seen, a language is uniform or not with respect to a given set of rules.

In some cases (for example disjunctive logic programming) changes to the logic affect

whether a language is considered to be a logic programming language. As with the use of

logical equivalences this raises the question: when is it “sound” to “fiddle” with a logic?

An important question is to what extent the presentation of the logic can affect the

derivation of programming languages. It would be desirable for different presentations of

the same logic to yield the same language. This is not the case in general (for exampleDA

seems to be more restrictive for one sided presentations) but in the examples we have seen
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that changes to the language were fairly minor. We now show that in general, significant

changes to the language derived can be made by changing the presentation of a logic.

Let us consider as an example the multiple conclusioned presentation of intuitionistic

logic presented in figure 2.3 on page 9. Since intuitionistic logic has seen a fair amount

of work and some definite conclusions [56] this is a good test.

Consider the proof of the sequent p _ q ` p _ q. Using the standard (single con-

clusioned) rules for intuitionistic logic this sequent has a proof but the proof must begin

by applying a left rule. Thus uniformity (and any of our extensions) will not deem the

sequent to be legal in a logic programming language.

On the other hand, using the multiple conclusioned rules we have a uniform proof:

p ` p
Ax

q ` q
Ax

p _ q ` p; q
_ � L

p _ q ` p _ q
_ � R

This indicates that the presentation of a logic can, in general, completely change the

logic programming language derived. There is room for further work into the derivation

of logic programming languages. This work is likely to go beyond uniformity and look

at the big picture.

The Big Picture

Let us take a step back and consider the global picture. In programming there are a num-

ber of different levels at which a program can be viewed. These are (i) the formal seman-

tics level, (ii) the implementation level, and (iii) a level in between which the programmer

uses to visualise the execution.

In some cases the third logic is just one of the previous two but in general this is not

the case. When the implementation makes use of sophisticated algorithms (for example,

lazy evaluation for functional languages [74, 75], co-routining [116] or constraint solv-

ing [79] for logic programming languages, or indeed, lazy resource allocation for linear

logic programming languages) it becomes infeasible to use the implementation rules as

a way of visualising execution. The formal semantics can be too high level to visualise

execution – for example issues of efficiency – both time and space – are often ignored.
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When we consider designing a logic programming language, we should consider these

three levels. In the context of logic programming these are expressed as logics:

1. A semantic logic,

2. A visualisation logic, and

3. An execution logic.

The semantic logic is typically the standard sequent calculus rules for the logic. It is

used to give a declarative semantics to the language. This logic is used to prove properties

of programs and to construct tools such as program analysers, partial evaluators etc.

The execution logic must be “tolerably efficient”. This includes for example the han-

dling of 9 � R by unification and the handling of 
 � R by a lazy resource allocation

mechanism. As a rough guide the application of a rule should not require an infinite

(9 � R) or exponential (
� R) choice.

The visualisation logic is used by the programmer to picture the execution of the pro-

gram. When the programmer asks the system “how was this answer derived?” the an-

swer is expressed in terms of the visualisation logic. The essential property of this logic

is its simplicity. I would like to suggest that the existence of the visualisation logic is

what distinguishes logic programming from theorem proving. Note that the visualisation

logic does not need to be efficient – for example when visualising the execution of Lygon

programs it is natural to work with the naı̈ve version of 
.

The design of characterisers which can be used to judge whether a logic subset can

be considered a programming language amounts to an investigation of the required rela-

tionship between these three logics.

For example, uniformity requires that the visualisation logic be the semantic logic

limited to a goal-directed proof search strategy. There does not seem to be a good reason

why more general visualisation logics are not feasible. Indeed, for certain languages (e.g.

Lygon and disjunctive logic programming) they are highly desirable.

We would like to suggest that the execution logic should be related to the visualisation

logic at the inference level. That is, if

� ` �
�0 ` �0
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is an inference rule in the visualisation logic then there is an essentially equivalent set

of inference steps in the execution logic. Conversely, any proof in the execution logic

should be able to be viewed as a collection of proof steps each of which corresponds to

an inference at the visualisation level.

This strong relationship between the execution and visualisation logics is required so

that the programmer can use the visualisation logic to debug programs being executed

by the execution logic. This requirement prevents arbitrary theorem provers from being

considered as logic programming languages. On the other hand, we see no obvious

reason why the relationship between the semantic and visualisation logics needs to be

any stronger than the theorem level, that is, that there is a proof of � ` � using the

semantic logic if and only if there is a proof of the same sequent using the visualisation

logic.

There is room for further work in this area. The fundamental question of what con-

stitutes a logic programming languages is still not well understood.
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Chapter 4

Implementation Issues

Implementing Lygon is nontrivial. In addition to the usual issues for logic programming

languages there are a number of new ones. Two particular problems stand out:

1. In searching for a proof of a goal involving the connective 
 we need to split the

context between the two subproofs. This is done in the reduction of the 
 rule.

Since logic programming languages search for proofs in a bottom up fashion this

splitting is nondeterministic and inefficient if done naı̈vely.

2. Consider searching for a proof of a multiple conclusioned goal. Each time an infer-

ence rule is to be applied we must first select the formula that is to be reduced. This

formula is the active formula. If done naı̈vely this selection process implies that

any proof involving multiple conclusions has significantly more non-determinism

than necessary.

This chapter discusses these two issues and presents solutions to them. The solutions

presented have been incorporated in the current implementation of Lygon.

We begin by tackling the first problem. We show how the lazy implementation of

the multiplicative connectives (specifically
) cannot be done simply by altering the ap-

propriate rule for 
, but requires the entire system to be redesigned, and particular care

taken with the rules for N and >. Essentially this is done by adding some new markers

to formulae, to indicate whether the formula has been used in another part of the proof or

not, and hence determine what resources are available to the current branch of the proof.
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This process may be thought of as a problem of resource management, in that one of the

key requirements of the proof search process is to allocate each formula to a branch of

the proof. Clearly any implementation of Lygon will need to do this in a deterministic

manner, i.e., follow a particular allocation strategy. It is the technicalities associated with

this problem that is the main contribution of this chapter.

This chapter is organized as follows. In section 4.1 we discuss the problems of using

a lazy approach to the multiplicative connectives, and how this affects other parts of the

system. In the following two sections we prove that the resulting lazy system is sound

and complete with respect to the standard one sided sequent calculus for linear logic. In

section 4.4 we discuss the second problem and note that the observations in [6, 44] can

be used to provide a heuristic that (partially) solves the second problem. We conclude

the chapter with a brief discussion.

4.1 The Challenge of Being Lazy

The standard formulation of the inference rules for linear logic have a significant amount

of nondeterminism. Some of this nondeterminism is unavoidable and does not create

efficiency problems; for example the � rule. Consider however the 
 rule:

� ` F;� � ` G;�
�;� ` F 
G;�;�




When this rule is applied bottom up, that is from root to leaves, we need to divide the

formulae in the sequent between the two sub-branches. This division can be done in a

number of ways which is exponential in the number of formulae. Hence a naı̈ve imple-

mentation which backtracks through all possibilities is not feasible.

However it is possible to modify the
 rule so the division of formulae between sub-

branches is done efficiently. The key idea is that all formulae are passed to the first sub-

branch. Unused formulae are returned and then passed to the second sub-branch. We

refer to this mechanism as lazy splitting ([69] refer to this mechanism as an input output

model of resource consumption). Consider as an example the proof of pO (1
 p?). We

begin by using the O rule to break off the p yielding p; 1
 p?. We then process the left
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side of the 
 rule – we pass it the rest of the context (i.e. the p). We are now trying to

prove p; 1. This succeeds with the p as unused residue. The p is then passed to the right

branch of the 
 rule: p; p? which is just an instance of the axiom rule.

The details of this solution however are not without a certain amount of subtlety – if

care is not taken, soundness can be compromised. We begin by considering a fragment

of Lygon excluding>. Lazy splitting for this fragment is relatively straightforward; the

real subtlety arises when > is re-introduced.

Consider the formula (pO1)
p?. Clearly it is not provable as the following attempt

shows
` 1; p
` 1O p

O
` p?

` (1O p)
 p?



Consider now a naı̈ve formulation of lazy splitting. Instead of a sequent of the form ` �

we use the notation � ) � with the intention that the � are the excess formulae being

returned unused. A successful proof cannot have excess resources and hence we require

that its root be of the form �) ;.

The standard sequent rules are modified as follows. The axiom rules are modified

to return unused formulae. Note that since the treatment of the nonlinear region (�) is

unchanged from L we elide the “� :” from the rules.

p; p?;�) �
Ax

1;�) �
1

The unary logical rules are modified to pass on returned formulae

F;G;�) �
F OG;�) �

O

Finally, the 
 rule passes the excess from the left sub-branch into the right sub-branch.

F;�) � G;�) �
F 
G;�) �




Using these rules we find however that (pO 1)
 p? is derivable!

1; p) p
1

1O p) p
O

p; p?) ;
Ax

(1O p)
 p?) ;
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The reason we have lost soundness is that not all formulae should be returnable. For

lazy splitting to be valid we must not return formulae which were not present in the con-

clusion of the
 rule. In the unsound proof above, p should not be returned by the 1 rule

since it was introduced above the 
 rule.

To prevent this problem we must keep track of which formulae are returnable. We

do this by tagging a returnable formula with a subscript 1. Untagged formulae must be

consumed in the current branch of the proof. Tagged formulae may be returned from the

current branch. The revised rules can only pass on unused formulae if they are tagged:

p; p?;�1 ) �1
Ax

1;�1 ) �1
1

The revised 
 rule

F;�1 ) �1 G;�) �
F 
G;�) �




marks all existing formulae as returnable and then passes them to the first sub-branch.

Note that the formulae returned from the first sub-branch must have their tags removed

before being passed to the second sub-branch. This ensures that formulae which are un-

tagged in the conclusion of the
 rule cannot be returned unused from the right premise

and hence from the conclusion. As an example consider the formula (pO (1
 1))
 p?

which is clearly unprovable inL. If we neglect to have our lazy
 rule strip away the tags

before passing formulae to the right premise we lose soundness since the above formula

has a derivation:

p1; 1) p1
1

p1; 1) p1
1

p; 1
 1) p1



pO (1
 1)) p1
O

....
p1; p

?)

(pO (1
 1))
 p?)



Aside: A seemingly plausible alternative to having the 
 rule do the checking is to

have the O rule refuse to construct F O G if either F or G occur in the residue. To see

that this is unworkable consider the derivation of (pO (1
1))
 q?) where the program

contains the single clause p  q (which could be encoded on the right hand side of the
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sequent as ?(p? 
 q).

q1; 1) q1
1

q1; 1) q1
1

q; 1
 1) q1



p; 1
 1) q1
Program

pO (1
 1)) q1
O

....
q1; q

? )

(pO (1
 1))
 q? )



Note that the O rule has no way to detect that anything untoward is happening. This

derivation is essentially the same as the previous one and is equally invalid. End Aside.

We now introduce an additional rule. The Use rule is used to claim a formula for use

in the current sub-branch by stripping off the tags that allow it to be passed out of the

current sub-branch.
F 0;�) �
F;�) � Use

where F 0 represents F with all tags removed.

EXAMPLE 1

p; p? )
Ax

p1; p
? )

Use
1) 1

p; p? 
 1)



Note that we have to allow nestable tags in order to handle nested occurrences of 
.

The 
 rule adds and removes a single tag. We generalise the notation �1 to any natural

number.

EXAMPLE 2

The formula ((pO (1
 p?))
 q)O q? is provable

` 1 1
` p; p?

Ax

` p; 1
 p?



` pO (1
 p?)
O

` q; q?
Ax

` (pO (1
 p?))
 q; q?



` ((pO (1
 p?))
 q)O q?
O
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Using lazy splitting we obtain the following proof which uses “nested” tags.

1; p1; q?2 ) p1; q
?

2

1
p; p?; q?1 ) q?1

Ax

p; 1
 p?; q?1 ) q?1



pO (1
 p?); q?1 ) q?1
O

q; q?)
Ax

(pO (1
 p?))
 q; q?)



((pO (1
 p?))
 q)O q?)
O

EXAMPLE 3

The similar formula ((q? O (1 
 p?)) 
 q) O p is not provable. That the lazy splitting

proof fails is dependent on the use of nested tags.

q?1 ; 1; p2 ) q?1 ; p2
1

p?; p1; q
?)?

q?; 1
 p?; p1 )?



q? O (1
 p?); p1 )?
O

q; ?) �

(q? O (1
 p?))
 q; p) �



((q? O (1
 p?))
 q)O p) �
O

Note that in the leaf p?; p1; q? we cannot return the q since it is not tagged.

We have seen the rules for 
, O and 1. The rules for � , ? , ? , 8 , 9 are similar to

O. The Ax rule is similar to 1. When we apply ! we must ensure that there are no other

(linear) formulae. Thus we force all excess formulae to be returned. In a way ! is similar

to the Ax and 1 rules.
F )

!F;�n ) �n
!

EXAMPLE 4

The formula ((!p)
 (p� 1))O p? is unprovable:

p)

!p; p?1 ) p?1
!

p; p?
Ax

p� 1; p? )
�

(!p)
 (p� 1); p? )



((!p)
 (p� 1))O p? )
O

The other logical rule which is affected by the lazy splitting mechanism is theN rule:

F;�) � G;�) �
F NG;�) �

N
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This rule has the constraint that � = � = �. This enforces the constraint in the non-

lazyN rule that the two sub-branches have the same context. Note that we prefer to have

an explicit constraint since in the next section this constraint will need to be modified.

EXAMPLE 5

We now consider a slightly larger example. Consider the program p q. This is trans-

lated as !(q( p) on the left hand side. Expressing( in terms ofOwe obtain !(q?Op).

Since we work with a single sided sequent calculus we negate the formulae so we can put

it on the right. Negating the formula yields ?(p?
 q). Our query is (pN 1)O (q?�?).

The proof illustrates the handling of nonlinear formulae and the N rule. Recall that

the notation � : �) � represents ?�;�) �.

p? 
 q : p?; p; (q? �?)1 ) (q? �?)1
Ax

p? 
 q : p?; p1; (q
? �?)1 ) (q? �?)1

Use
p? 
 q : q; q? )

Ax

p? 
 q : q; q? �? )
�

p? 
 q : p? 
 q; p; q? �? )



p? 
 q : p; q? �? )
?D

p? 
 q : 1 )
1

p? 
 q : 1;? )
?

p? 
 q : 1; q? �? )
�

p? 
 q : pN 1; q? �? )
N

:?(p? 
 q); pN 1; q? �? )
?

:?(p? 
 q); (pN 1)O (q? �?) )
O

The rules we have seen form the working core of the lazy splitting inference rules for

the fragment of the logic excluding>. Looking at a complete proof and seeing sequents

of the form a?1 ; b1; a) b1 the reader may be left with the feeling that there is still some

magic at work. This is not so; when a proof is being constructed bottom up, the right-

hand side of the arrow ()) is left unbound on the way up and determined at the leaves.

EXAMPLE 6

The construction of a proof for p?; q?; p 
 q goes through the following steps (where

capital letters represent meta-variables)

1. The root of the proof is

p?; q?; p
 q ) Y

2. We apply the 
 rule to obtain

p?1 ; q
?

1 ; p) X1 q;X ) Y

p?; q?; p
 q ) Y
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3. We realise that we need p? in order to apply the axiom rule and so decide to Use

it.
p?; q?1 ; p) X1

p?1 ; q
?

1 ; p) X1
Use

q;X ) Y

p?; q?; p
 q ) Y



4. We now apply the axiom rule. The formula q?1 is returnable excess so we return it.

This binds X .

p?; q?1 ; p) q?1
Ax

p?1 ; q
?

1 ; p) q?1
Use

q; q?) Y

p?; q?; p
 q ) Y



5. We have finished the left sub-branch of the 
 rule and now look at the right sub-

branch. We realise that we can immediately apply the axiom rule. Since there are

no excess formulae, Y is bound to empty.

p?; q?1 ; p) q?1
Ax

p?1 ; q
?

1 ; p) q?1
Use

q; q?)
Ax

p?; q?; p
 q )



Adding >

The rules presented so far form a sound and complete collection of inference rules for

the fragment of the logic excluding >. These rules manage resources deterministically.

The lazy splitting version of> involves a significant amount of subtlety and has im-

plications for the N rule which ends up becoming fairly complex.

Consider the standard inference

` >;� >

....
` G;�

` > 
G;�;�



....

The rule for > simply consumes all formulae. Consider however the lazy splitting ver-
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sion of the above inference

>;�1;�1 ) �1
>

....
G;�)

>
G;�;�)



....

The application of the > rule must somehow know which formulae are not to be con-

sumed since they will be required elsewhere in the proof.

Note that the lazy splitting version of the > rule has to divide formulae between >

and the rest of the proof. This can be done in a number of ways which is exponential in

the number of formulae.

Although this sounds similar to the problem in the original 
 rule there are two dif-

ferences. Firstly, it is not possible to nest >s, so a single non-nestable tag will suffice.

Secondly and more significantly, the direction is opposite – the first sub-branch of the


rule returns formulae which are unconsumed and which must be consumed by the sec-

ond sub-branch. The> rule on the other hand will consume all formulae by tagging them

appropriately then passing them on. The formulae passed on have been consumed by >

but – in case they should not have been – can be “unconsumed”.

We shall use a superscript question mark (e.g. �?) to tag formulae which have been

consumed by> and which can be “unconsumed” if necessary. Note that untagged formu-

lae are simply consumed by the > rule since they cannot be returned for use elsewhere.

>;�;�1 ) �?
1

>

One might be tempted to define �? in terms of existing connectives, viz. F ? =

F � ?. There is however a subtle but important difference between the two. F ? rep-

resents a formula which may have been consumed by >, thus F is either consumed —

in which case it must not be used elsewhere — or unconsumed — in which case it must

be consistently accounted for.

F � ? on the other hand allows for some parts of the proof to choose F and other

parts to choose ?. Consider ((>
 (pN 1))O p?) which is not provable in the standard
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system as shown below

` > >
` p; p?

Ax
` 1; p?

` pN 1; p?
N

` > 
 (pN 1); p?



` (>
 (pN 1))O p?
O

` >; p?
>
` p ` 1 1

` pN 1
N

` > 
 (pN 1); p?



` (>
 (pN 1))O p?
O

Yet if we use p�? in place of p? it has a derivation:

>; p?1 ) (p? �?)1
>

p; p?)
Ax

p; p? �? )
�

1) 1

1;? ) ?

1; p? �? )
�

pN 1; p? �? )
N

>
 (pN 1); p? )



(>
 (pN 1))O p? )
O

In addition to pointing out the difference between F ? and F � ? this suggests that

the > rule cannot be simply added to the system since maintaining the consistent usage

of formulae of the form F ? requires a measure of global information. Thus, rather than

having the axiom rules delete consumed formulae which have turned out to be unneeded

p; p?;�?;�1 ) �1
Ax0

we must return the consumed formulae which were unneeded, so that we can check that

different additive branches agree on which consumed formulae have had to be uncon-

sumed.

p; p?;�?;�1 ) �1;�
? Ax

If we do not return the unused formulae then we lose soundness, and we can derive

unprovable sequents such as p; q;>
 (p? N q?)

EXAMPLE 7

p1; q1;> ) p?1; q
?
1

>

p; q?; p?)
Ax0

p?; q?; p?)
Use

p?; q; q?)
Ax0

p?; q?; q?)
Use

p?; q?; p? N q? )
N

p; q;>
 (p? N q?))
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We thus use Ax rather than Ax0. In order to do this we must modify the unary rules

to pass on the returned formulae of the form F ?. We also need to have a look at the two

binary rules — 
 and N.

The 
 rule does the usual passing from the left sub-branch to the right. The only

interesting point is that it is possible for the left sub-branch to return formulae which do

not have a �n tag. These formulae are of the form F ? and they must be returned by the

conclusion of the 
 inference without being passed to the right sub-branch. If this is

not done, soundness is compromised. Consider the formula ((> 
 1) O p) 
 p? which

is clearly unprovable. If we use a lazy 
 rule which passes these formulae to the right

premise before returning them then there is a derivation of this formula:

>; p1 ) p?1
>

1; p? ) p?
1

>
 1; p) p?



(>
 1)O p) p?
O

p; p?)
Ax

p?; p?)
Use

((>
 1)O p)
 p? )



The intuition behind this is that a formula of the form F1 can be returned from the current

branch for use elsewhere. The same is not true of formulae of the form F ? - we cannot

pass them on for use elsewhere, they must be propagated down the proof. These formulae

(F ?) are returned only to enable theN rule to enforce consistent consumption of formulae

by > rules in both subproofs.

We now consider theN rule. As we shall see, it is possible for the residues of the two

premises of a N inference to be different. We need to determine when such a disagree-

ment is harmless and what the residue of the inference’s conclusion should be in these

situations.

The presence of a formula of the form p?n in the residue of a sequent indicates that the

proof of the sequent has consumed p but that it could equally well be unconsumed. For

example if p1;�) p?1 is provable then ` � and ` �; p are both provable.

Consider now a premise of the N rule which has this property. The conclusion of

the N inference will have the property of being provable with or without p only if both

premises have the property.

In the following example the right premise has the property that both ` > and ` >; p

are provable. However the left premise does not have this property as ` p; p? is provable



118 CHAPTER 4. IMPLEMENTATION ISSUES

but ` p? is not. As a result, the conclusion of theN inference does not have this property

as ` p? N>; p is provable but ` p? N> is not.

EXAMPLE 8

p?; p)
Ax

p?; p1 )
Use

>; p1 ) p?1
>

p? N>; p1 ) X
N

This sub-proof occurs in the proof of ((p? N >) 
 1) O p and hence needs to be

derivable. Intuitively, since the conclusion of the inference needs the p its residue should

be empty – this prevents a different proof branch from attempting to use p. Note that if

the right premise did not have the property discussed then the inference would be invalid.

Consider now the following example, which illustrates aN inference where the residues

of the premises disagree on a formula of the form F ?.

EXAMPLE 9

>; p1 ) p?1
>

1; p? ) p?
1

>
 1; p) p?



p?; p)
Ax

(>
 1)N p?; p)
N

The presence of p? in � ) p? indicates that p? was not unconsumed. The proof in

example 9 is valid since we can force the left premise to consume the p. This can be

done by having the residue of the conclusion be empty which rules out the possibility of

another proof branch unconsuming the p.

As before, the reconciliation of the differences in the premise’s residues requires that

we know whether the premise with an excess in its residue is able to accept the excess.

The local information present at the point of the N inference is insufficient to determine

this. As examples 8 and 9 indicate, whether a sub-prof can accept extra formulae is de-

termined by its structure.

We term (sub-)proofs that can accept additional formulae >-like (since such proofs

must contain an occurrence of the> inference). In aN inference, whenever the premise’s

residues disagree we can reconcile the disagreement if the premise with the larger residue
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is flexible – that is, if it is the conclusion of a >-like proof. If we have a disagreement

and no reconciliation is possible since the premise in questions is not >-like (as occurs

in example 7) then theN inference fails.

In example 8 the disagreement is that the right premise has more in the residue than

the left premise. Since the right premise is >-like we can reconcile by forcing the right

premise to consume p – that is, it can not offer the rest of the proof the possibility of

unconsuming p since the left premise of the N inference will fail if this is done. The

reconciliation can simply be done by having the residue of theN rule be the intersection

of the residues of its premises. In example 9 the left premise is>-like and reconciliation

is possible. The residue of the conclusion is empty.

To be able to check whether reconciliation is possible we add tags to enable us to

track whether a given sequent is the conclusion of a >-like proof. We tag a sequent with

=true if the proof is >-like and with =false if it is not. The > rule is tagged =true, the

Ax and 1 rules are tagged =false. The unary rules pass on the tag. A
 rule’s conclusion

is >-like if at least one of its premises is. So, if the tags on the two premises are =x and

=y the tag on the conclusion is =x_ y. The conclusion of a N inference is >-like if both

premises are. So, if the tags on the two premises are =x and =y the tag on the conclusion

is =x ^ y.

The proof in example 8 is valid since the right premise would be labelled with =true.

The left premise of the N inference in example 9 would also be labelled with =true.

One minor wrinkle is that while intersection must agree on the formulae, it may not

agree on their tags. Specifically, the formulae in one premise may have a�? tag in addi-

tion to some �n tags whereas those in the other premise may not have the �? tag:

EXAMPLE 10

What value should we give to X in the following proof?

p1;> ) p?1
>

p1; 1) p1
1

p1;>N 1) X
N

The solution is to pass on the�? tag if both premises have it and to strip it off if only

one of the premises has it. This can be viewed as a sort of unification over tags.
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The final N rule in all its glory may be found in figure 4.1. In calculating the conclu-

sion’s residue it uses intersection on multisets of formulae and an operation “mintag”

which given two tagged formulae removes the �? tag if exactly one of the formulae has

the tag and leaves the formulae unchanged otherwise.

Our final example shows the N and > rules in action. Note that the r in the right

premise of theN rule is excess; however the premise in question is tagged with =true so

the proof is valid.

EXAMPLE 11

>; p1; q1; r1 ) p?1; q
?
1; r

?
1=true

>
�1 �2

(r? 
 p?)N (>
 p?); p?; q?; r? ) q?=false
N

>
 ((r? 
 p?)N (>
 p?)); p; q; r) q?=true



where �1 is

r?; p?1; q
?
1; r) p?1; q

?
1=false

Ax

r?; p?1; q
?
1; r

?
1 ) p?1; q

?
1=false

Use
p?; p; q? ) q?=false

Ax

p?; p?; q? ) q?=false
Use

r? 
 p?; p?; q?; r? ) q?=false



and �2 is

>; p?1; q
?
1; r

?
1 ) p?1; q

?
1; r

?
1=true

>
p?; p; q?; r? ) q?; r?=false

Ax

p?; p?; q?; r? ) q?; r?=false
Use

>
 p?; p?; q?; r? ) q?; r?=true



DEFINITION 29 (NOTATION)

In the remainder of this chapter we shall need to refer to different multisets of formulae

based on their tags. The following notation is used:

� Capital letters (A, B, C, D) are used to represent multisets of formulae.

� We use subscripts numbers and a possible superscript “?” to indicate which tags

characterise the multiset. For example A2 consists of all formulae of the form p2.

� We assume that n is the maximum number of tags occurring in a given proof. A

common idiom is A;A1; : : : ; An which covers all formulae in a sequent which do

not have �? tags.
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� We use a t superscript to represent both formulae with a�? tag and formulae with-

out. At
j

def
= Aj [ A?

j

� We use an x subscript to represent all subscript tags from 1 upwards.

Ax
def
= A1 [ A2 [ : : : [ An

� For uniformity we shall sometimes write A0. This is equivalent to A.

� We shall sometimes need to refer to a multiset and modify its tags. A superscript

modifier is used to denote this. For example if A2 is the multiset fp2; (q N r)2g

then A+?
2 is the multiset fp?2; (q N r)?2g and A+1

2 is the multiset fp3; (q N r)3g.

EXAMPLE 12

Suppose we have a sequent containing the following formulae:

p; q1; r
?; t?2; s1; 14

then the following hold:

A = p A+1 = p1

A1 = q1; s1 A+1
1 = q2; s2

A? = r? A?+1 = r?1

A?
2 = t?2 A?�1

2 = t?1

A?
1 = ; A?+1

1 = ;

A?
1+1 = A?

2 = t?2

At
0 = At = A [ A? = p; r?

At+?
0 = p?; r?

Ax = q1; s1; 14 A?
x = t?2

At
x = Ax [ A

?
x = q1; s1; 14; t?2
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Figure 4.1 The Final System (M)
We define �0 to remove all tags. Thus (F t

x
)
0

= F . We shall also need to define mintag:

mintag(x; y)
def
= x; if x and y are identical formulae with the same tags

mintag(F ?
n
; Fn)

def
= Fn

mintag(Fn; F
?
n
)

def
= Fn

The N rule is only applicable if the following four side conditions hold:

1. �t

x

def
= fmintag(F;G)jF 2 �t

x
^G 2 �t

x
^ F+? = G+?g

2. �? def
= fF jF 2 �? [ �?g. We shall sometimes refer to �

def
= �t

x
[ �?.

3. If x is =false then (�t

x
;�?) � (�t

x
;�?).

4. If y is =false then (�t

x
;�?) � (�t

x
;�?).

� : p; p?; At

x
; B? ) At

x
; B?=false

Ax
� : 1; At

x
; B? ) At

x
; B?=false

1

� : >;�; At

x
; B? ) At+?

x
; B?=true

>
� : �; At

x
; B? ) Ct

x
; D?=x

� : ?;�; At

x
; B? ) Ct

x
; D?=x

?

� : F;�; At

x
; B? ) Ct

x
; D?=x

� : F �G;�; At

x
; B? ) Ct

x
; D?=x

�1

� : G;�; At

x
; B? ) Ct

x
; D?=x

� : F �G;�; At

x
; B? ) Ct

x
; D?=x

�2

� : F ) D?=x

� :!F;At

x
; B? ) At

x
; B?=false

!
� : F;G;�; At

x
; B? ) Ct

x
; D?=x

� : F OG;�; At

x
; B? ) Ct

x
; D?=x

O

� : F [t=x];�; At

x
; B? ) Ct

x
; D?=x

� : 9xF;�; At

x
; B? ) Ct

x
; D?=x

9
� : F [y=x];�; At

x
; B? ) Ct

x
; D?=x

� : 8xF;�; At

x
; B? ) Ct

x
; D?=x

8

where y is not free in �

�; F : �; At

x
; B? ) Ct

x
; D?=x

� :?F;�; At

x
; B? ) Ct

x
; D?=x

?
F; � : F;�; At

x
; B? ) Ct

x
; D?=x

F; � : �; At

x
; B? ) Ct

x
; D?=x

?D

� : F 0;�; At

x
; B? ) Ct

x
; D?=x

� : F;�; At

x
; B? ) Ct

x
; D?=x

Use

� : F;�+1;�t+1
x

;�?+1 ) �+1;�t+1
x

;�?+1;�?=x � : G;�;�t

x
;�? ) �t

x
;�?=y

� : F 
G;�;�t
x
;�? ) �t

x
;�?;�?=x _ y




� : F;�;�t
x
;�? ) �t

x
;�?=x � : G;�;�t

x
;�? ) �t

x
;�?=y

� : F NG;�;�t
x
;�? ) �t

x
;�?=x ^ y

N



4.1. THE CHALLENGE OF BEING LAZY 123

The Rules

Having travelled through the evolution of the deterministic rules we are now in a position

to collect and categorise the result. This categorisation will be of use in induction proofs

in the following sections. By recognising the similarities among groups of rules we can

use induction over the rule groups rather than the rules thus reducing the number of cases.

The rules (M, given in figure 4.1) fall broadly into four groups. The first group com-

prises rules which are essentially unchanged. For example the L rule for O is

� : F;G;�
� : F OG;�

O

and theM rule is

� : F;G;�; At
x; B

? ) Ct
x; D

?=x

� : F OG;�; At
x; B

? ) Ct
x; D

?=x
O

This rule (and the others in the first group) simply pass along the tagged formulae and

the returned residue. In this group are the rules for ? , � , O , 9 , 8 , ? and ?D.

The second group of rules comprises the axioms. These rules instantiate the residue

to the tagged formulae and the tag to =false. Note that we include ! as an axiom since it

behaves like one.

� : p; p?; At
x; B

? ) At
x; B

?=false
Ax

� : a) D?=x

� :!a; At
x; B

? ) At
x; B

?=false
!

This group comprises Ax , 1 and !.

Both groups of rules so far have a simple relationship to the L rules. The third group

of rules comprises the remaining rules in Lwhich are significantly changed inM. These

rules are > , N and 
.

Finally the Use rule does not have a counterpart in L and we place this rule into a

group of its own.

We shall see later on (theorem 119) that this system manages resources deterministi-

cally, and as such it can be implemented efficiently.
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4.2 Soundness

In this section we prove that our deterministic system (M) is sound with respect to the

one-sided sequent calculus for linear logic (L).

The basic idea behind the soundness proof is to treat Ct
x; D

? in theM sequent � :

�; At
x; B

? ) Ct
x; D

? as excess and “subtract” them from At
x; B

? to obtain the L sequent

� : �; ((A;B)�(C;D)). The core of the soundness proof is an algorithm which converts

anM proof to an L proof. This algorithm will be shown to map anyM proof into an L

proof; thus showing the soundness ofM with respect to L.

This approach is complicated by the fact that the subtraction used is not necessarily

valid - although we show that Ct
x is a sub-multiset of At

x, this does not hold for D? and

B?. We observe that whenever D? * B?

1. A > rule is involved (lemma 100)

2. The sequent is labelled with =true (lemma 101)

We then define a notion of backpatching. Intuitively, wherever D? * B? we augment

the sequent by adding D? to the left of the) thus fixing the imbalance. In order for the

augmented sequent to fit into the proof we need to propagate. Propagation simply adds

the same formulae to the premises until a> rule is reached. We show that backpatching

and propagation

1. Always succeed (lemma 103)

2. Produce a proof where D? is a sub-multiset of B? (lemma 106)

For the rest of this section we will view sequents as consisting of the following groups

of formulae:

� : A0; A1; : : : ; An; B
?
0; B

?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?
1; : : : ; D

?
n; D

?
0

For the purposes of induction arguments we shall use induction over the rules 1 , !,

O , > , 
 , N and Use. The other rules are similar to either 1 or O. We write X � Y to

indicate that X is either equal to or is a sub-multiset of Y . This comparison ignores tags;

that is X � Y iff X 0 � Y 0 where (F t
x)
0 def
= F .
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LEMMA 97

In all sequents occurring inM proofs we have that Ci; Di � Ai; Bi and Ci � Ai where

i � 1.

Proof: We use induction on the structure of the proof.

The rules 1 and Ax:

These rules are base cases for the induction. In both cases the Ci are the Ai and the Di

are the Bi. Hence the hypothesis trivially holds.

The > rule:

We can write the > inference as follows

� : >;�; A1; : : :An; B
?; B?

1; : : : ; B
?
n ) A+?

1 ; : : : ; A+?
n ; B?; B?

1; : : : ; B
?
n

>

Thus, the Ci are empty, as all formulae in the residue have a �? tag; and the Di are the

union of the corresponding Ai and Bi. Hence Ci = ; � Ai and Ci; Di = A+?
i ; Bi �

Ai; Bi as desired.

The O rule:

The desired property holds for the premise by the induction hypothesis. Observe that the

differences between the premise and the conclusion do not involve tagged formulae, and

hence the desired property holds in the conclusion of the inference.

The Use rule:

The Use rule can be written as follows

F;A1; : : : An; B
?; B?

1; : : : ; B
?
n ) C1; : : : ; Cn; D

?; D?
1; : : : ; D

?
n

F t
x; A1; : : :An; B

?; B?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?; D?
1; : : : ; D

?
n

Use

There are a number of cases:

1. The formula being Used is tagged F ?. In this case there is no effect on theAi orBi

and since, by the induction hypothesis, the property holds for the premise, it also

holds for the conclusion of the inference.

2. The formula being Used is tagged F ?
i . In this case the induction hypothesis applied

to the premise tells us that Ci; Di � Ai; Bi and Ci � Ai. The properties that we

wish to show hold in the conclusion areCi; Di � Ai; Bi; F
?
i andCi � Ai and these

follow directly from the induction hypothesis.
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3. The formula being Used is tagged Fi. In this case the induction hypothesis applied

to the premise tells us that Ci; Di � Ai; Bi and Ci � Ai. The properties that we

wish to show hold in the conclusion are Ci � Ai; Fi and Ci; Di � Ai; Fi; Bi and

these follow directly from the induction hypothesis.

The N rule:

The left premise is

� : A0; A1; : : : ; An; B
?
0; B

?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?
1; : : : ; D

?
n; D

?
0

and the right premise is

� : A0; A1; : : : ; An; B
?
0; B

?
1; : : : ; B

?
n ) E1; : : : ; En; F

?
1 ; : : : ; F

?
n; F

?
0

By the induction hypothesis these satisfy the constraints

Ci; Di � Ai; Bi

Ci � Ai

Ei; Fi � Ai; Bi

Ei � Ai

The conclusion of the N inference is

� : A0; A1; : : : ; An; B
?
0; B

?
1; : : : ; B

?
n ) G1; : : : ; Gn; H

?
1 ; : : : ; H

?
n; H

?
0

The first property we wish to show is thatGi; Hi � Ai; Bi. We have thatGi; Hi � Ci; Di

since – by the definition of theN rule – Gi; Hi is the intersection of Ci; Di and Ei; Fi and

henceGi; Hi � Ci; Di � Ai; Bi. The second property is thatGi � Ai. Note thatmintag

will “place” a formula in Gi if and only if it occurs in at least one of Ei or Ci. Hence,

since Ci � Ai and Ei � Ai (by the induction hypothesis) any formula in Gi must occur

in Ai hence Gi � Ai as required.

The 
 rule:

On the top left-hand side of the rule we have the sequent

� : p; A1; : : : ; An; B
?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?
1; : : : ; D

?
n; D

?
0
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which satisfies the conditions Ci; Di � Ai; Bi and Ci � Ai

On the top right hand side of the rule we have the sequent

� : q; C�1
1 ; C�1

2 ; : : : ; C�1
n ; D?�1

1 ; D?�1
2 ; : : : ; D?�1

n ) E1; : : : ; En; F
?
1 ; : : : ; F

?
n; F

?
0

which satisfies the conditions Ei; Fi � C(i+1); D(i+1) and Ei � C(i+1).

The conclusion of the inference is

� : p
q; A�1
1 ; A�1

2 ; : : : ; A�1
n ; B?�1

1 ; B?�1
2 ; : : : ; B?�1

n ) D?
0; E1; : : : ; En; F

?
1 ; : : : ; F

?
n; F

?
0

We wish to show that this sequent satisfies the properties Ei; Fi � A(i+1); B(i+1) and

Ei � A(i+1). We have that Ei � C(i+1) � A(i+1) and that Ei; Fi � C(i+1); D(i+1) �

A(i+1); B(i+1) �

LEMMA 98

In the 
 rule we have that � � �.

Proof: This follows from lemma 97 since � corresponds to C1 and � to A1. �

We now define backpatching. Backpatching is used to ensure that D? � B?. In-

tuitively, the role of backpatching and propagation is to take formulae which have been

consumed by a > rule and which have not been “unconsumed” and place them at the

appropriate > rule. Note that the result of backpatching and propagation may not be a

proper proof underM. However under the mapping defined by the third step of Algo-

rithm 1 (below) the result will be a well formed L proof. To avoid confusion we shall

refer to the result of backpatching and propagating anM proof as a quasi-proof. Note

that in some cases backpatching may not have any effect; in these cases the quasi-proof

is just anM proof. An example of such a proof is

1) >)
1
> )

DEFINITION 30 (QUASI-PROOF)

A quasi-proof is a backpatched and propagatedM proof.

DEFINITION 31 (BACKPATCHING)

To backpatch anM proof we modify certain sequents occurring in the proof as follows.

The structure of the proof remains unchanged.
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� We replace a ! inference of the form

� : F ) D?=x
: : : !

with the inference
� : F;D? ) D?=x

: : : !

� We replace the inference

: : :) : : :�?
x;�

? : : :) : : :�?
x;�

?

: : :) : : :�?
x;�

?
N

with the inference

: : : (�?
x;�

?)� (�?
x;�

?)) : : :�?
x;�

? : : : (�?
x;�

?)� (�?
x;�

?)) : : :�?
x;�

?

: : :) : : :�?
x;�

?
N

� We transform the root of the proof from

....
�) D?

to ....
�; D? ) D?

EXAMPLE 13

We backpatch the proof

>; p1; q1 ) p?1; q
?
1=true

>
q?; p?; q ) p?=false

Ax

q?; p?; q? ) p?=false
Use

>
 q?; p; q ) p?=true



In this case, there are no occurrences of ! or N inferences and so the only sequent that is

changed is the root of the proof which has p? added to it yielding

>; p1; q1 ) p?1; q
?
1=true

>
q?; p?; q ) p?=false

Ax

q?; p?; q? ) p?=false
Use

p?;>
 q?; p; q) p?=true
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Propagation fixes the invalid inferences that are temporarily introduced by backpatch-

ing. We propagate from each point where backpatching was done. Note that the prop-

agated formulae are of the form p?. When propagating into the left premise of a 
 rule

we do not add a tag; that is, the propagated formulae remain in the form p? and not the

form p?i . The reason for this is that backpatching introduces formulae in order to balance

residue of the form p?. We therefore desire the introduced formulae to remain associated

with the appropriate residue.

DEFINITION 32 (PROPAGATION)

To propagate from a sequent we take the formulae which were added by backpatching

and add them to the sequent’s premises using the following rules. Propagation is applied

to each sequent which was backpatched.

� If the sequent is the conclusion of one of O;?;�; 8; 9; ?D; ? or Use then the for-

mulae are added to the premise of the inference and we propagate from the premise.

� If the sequent is the conclusion of one of 1; Ax or ! then propagation fails.

� If the sequent is the conclusion of a > inference then propagation succeeds.

� If the sequent is the conclusion of a N inference then the formulae are added to

both premises and we propagate from both premises.

� If the sequent is the conclusion of a 
 inference then there are four cases:

1. Both premises are tagged =false – propagation fails.

2. The left premise is tagged =true and the right =false – we add all of the rel-

evant formulae to the left premise and propagate from the left premise.

3. The right premise is tagged =true and the left =false – we add all of the rel-

evant formulae to the right premise and propagate from the right premise.

4. Both premises are tagged =true – We add the formulae corresponding to �?

to the right premise and those corresponding to �t
x or �? to the left premise.

We then propagate from both premises.
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EXAMPLE 14

We apply propagation to the root of the following backpatched proof.

>; p1; q1 ) p?1; q
?
1=true

>
q?; p?; q ) p?=false

Ax

q?; p?; q? ) p?=false
Use

p?;>
 q?; p; q) p?=true



In this case backpatching has added the formula p? to the root of the proof. The sequent

is the conclusion of a 
 inference with one premise tagged =true and the other tagged

=false. We add the formula to the left premise (which is tagged =true) and propagate

from that premise. Propagation from the conclusion of a > inference simply succeeds.

This gives us the following quasi-proof:

p?;>; p1; q1 ) p?1; q
?
1=true

>
q?; p?; q ) p?=false

Ax

q?; p?; q? ) p?=false
Use

p?;>
 q?; p; q) p?=true



Note that the quasi-proof’s > inference is not actually an instance of the> rule since p?

is not returned as residue. Applying the translation in Algorithm 1 (see below) to this

quasi-proof yields the following L proof:

: >; p
>

: q?; q
Ax

: >
 q?; p; q



By applying backpatching and propagation we obtain a proof of the same form where

at every sequentD?
0 is a sub-multiset ofB?

0 . The next few lemmas show that backpatching

and propagation will always succeed. We begin by showing that whenever backpatching

is needed there is a > rule in the proof.

DEFINITION 33

We say that a > inference occurs above a sequent if the sequent is either the conclusion

of a > inference or a > inference is above one of the sequent’s premises.

LEMMA 99

If there is no > inference above a sequent then Ci � Ai and Di � Bi for i � 1.

Proof: The first property has already been proven in lemma 97 for the more general case
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including> inferences. Hence we only need to show that in the absence of > inferences

Di � Bi. We use induction.

The 1 rule: Di = Bi so the property holds.

The O rule: Bi and Di are the same in both the premise and the conclusion. By the

induction hypothesis Di � Bi in the premise and hence this holds for the conclusion.

The ! rule: By the induction hypothesis the desired property holds for the premise of

the inference. In the conclusion of the inference Di = Bi (as for 1) and the property

follows.

The > rule: Cannot occur by definition.

The Use rule: By the induction hypothesis Di � Bi in the premise. The conclusion

differs from the premise in that one of theBi might be augmented with F hence Di � Bi

holds in the conclusion.

The 
 rule: On the top left hand side of the rule we have the sequent

� : p; A1; : : : ; An; B
?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?
1; : : : ; D

?
n; D

?
0

which satisfies the condition Di � Bi.

On the top right hand side of the rule we have the sequent

� : q; C�1
1 ; C�1

2 ; : : : ; C�1
n ; D?�1

1 ; D?�1
2 ; : : : ; D?�1

n ) E1; : : : ; En; F
?
1 ; : : : ; F

?
n; F

?
0

which satisfies the condition Fi � D(i+1).

The inference’s conclusion is

� : p
q; A�1
1 ; A�1

2 ; : : : ; A�1
n ; B?�1

1 ; B?�1
2 ; : : : ; B?�1

n ) D?
0; E1; : : : ; En; F

?
1 ; : : : ; F

?
n; F

?
0

We have that Fi � Di+1 � Bi+1.

The N rule: The left premise is

� : A0; A1; : : : ; An; B
?
1; : : : ; B

?
n ) C1; : : : ; Cn; D

?
1; : : : ; D

?
n; D

?
0

and the right premise is

� : A0; A1; : : : ; An; B
?
1; : : : ; B

?
n ) E1; : : : ; En; F

?
1 ; : : : ; F

?
n; F

?
0
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These satisfy the constraints Di � Bi and Fi � Bi.

The conclusion of the inference is

� : A0; A1; : : : ; An; B
?
1; : : : ; B

?
n ) G1; : : : ; Gn; H

?
1 ; : : : ; H

?
n; H

?
0

We wish to show that Hi � Bi. For a formula to be in Hi it must be in both Fi and Di,

hence it must be in Bi and Hi � Bi as required. �

LEMMA 100

If there is no > inference above a sequent then D0 � B0.

Proof: Induction over the height of the proof. The only non-trivial rules are 
 and N.

The N rule:

The induction hypothesis applied to the right premise give us that �? � �?. Since �? =

�? \ : : : we have that �? � �? � �? as required.

The 
 rule:

Using the notation of the
 rule we wish to show that �?;�? � �?. Applying the induc-

tion hypothesis to the left premise tells us that�? � ;. Applying the induction hypothesis

to the right premise tells us that �? � �?. Finally, applying lemma 99 to the left premise

provides us with the information that�?+1 � �?+1. Putting all this together we have that

�?;�? � �? � �? as desired. �

We now show that propagation always succeeds.

LEMMA 101

If a sequent is tagged =false then for all i � 0 we have that Di � Bi.

Proof: By induction over the structure of the proof. The two non-obvious cases are the

binary rules.

N: There are three cases. Note that the conclusion of a N inference is tagged with

=true iff both premises are tagged with =true.

1. Both premises are tagged =false: In this case both premises satisfy the con-

dition and it follows from examination of the rule that so does the conclusion.

2. Exactly one of the premises is tagged =false: The Bi in the premise and the

conclusion are identical. Since Dconclusion
i = Dleftpremise

i \ Drightpremise
i
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we have that

Dconclusion
i � Dleftpremise

i

Dconclusion
i � Drightpremise

i

Without loss of generality assume that the left premise is tagged=false. Hence

Dleftpremise
i � Bi and Dconclusion

i � Dleftpremise
i � Bi as required.

3. Both premises are tagged =true: The conclusion of the inference is tagged

=true and the induction trivially holds.


: There are two cases

1. Both premises are tagged =false: In this case for i > 0 we apply lemma 99

and for i = 0 we apply lemma 100.

2. One or more of the premises are tagged =true: The conclusion of the infer-

ence must be tagged =true and the induction trivially holds.

COROLLARY:If Di * Bi for some i � 0 then the sequent must be tagged =true. �

We have shown that Di 6� Bi can not be the case for sequents which are tagged

=false. We now argue that (a) propagation will always succeed when it is applied to se-

quents which are tagged =true, and (b) backpatching is only applied to sequents tagged

with =true. It follows that backpatching and propagation cannot fail.

LEMMA 102

If a sequent is tagged with =true then we can add formulae to the sequent and successfully

propagate them.

Proof: By induction on the height of the sequent calculus proof. The base case is the

> rule which trivially satisfies the desired property. The only cases where propagation

fails are a
 inference with both premises tagged =false and Ax, 1 and ! inferences. We

therefore need to show that if a sequent is tagged with =true then

� If it is a unary rule its premise must also be tagged =true and hence by the induction

hypothesis we can add formulae to the premise of the inference and successfully

propagate them.
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� If it is aN inference both premises must be =true and hence propagation succeeds.

� If it is a 
 inference then at least one premise must be =true.

From examination of the algorithm for propagation it is obvious that only sequents tagged

=true are ever propagated into, providing the initial sequent was tagged with =true. Thus

propagation from a =true sequent cannot fail. �

LEMMA 103

Backpatching and propagation succeed on anyM proof.

Proof: We show that backpatching is only applied at sequents labelled =true and invoke

lemma 102. There are three places where backpatching may be applied:

1. A N inference: The side conditions on the rule ensure that if backpatching adds a

nonempty multiset of formulae to a sequent then the sequent will be tagged =true.

2. A ! inference: For backpatching to apply D? must be nonempty in the premise.

Since the premise has B? = ; this implies that D? * B? and hence by lemma 101

the sequent must be tagged =true.

3. The root of the proof: For backpatching to applyD? must be nonempty. Since the

root of the proof has B? = ; we can apply lemma 101 to conclude that if back-

patching is needed the sequent must be tagged =true. �

We are now in a position to define an algorithm mapping fromM to L proofs and to

use it to prove the soundness ofM with respect to L.

Our first task is to show that the algorithm produces an output for any inputM proof.

We then show that the output is a well formed L proof. Soundness follows from this.

In proving successful termination the only questionable step of the algorithm is the

subtraction

(At
x

0
; B?0)� (Ct

x

0
; D?0)

We have shown that Ct
x � At

x but there are cases where D? 6� B?.
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Algorithm 1 TranslatingM to L proofs

Input: AnM proof with root �) D?

Procedure:

1. Backpatch (Definition 31 on page 127)

2. Propagate (Definition 32 on page 129)

3. Apply the translation:

� : �; At
x; B

? ) Ct
x; D

?

+

� : �; ((At
x

0
; B?0)� (Ct

x

0
; D?0))

Output: An L proof of �

EXAMPLE 15

The following proof has B? = ; and D? = p?.

p1;> ) p?1=true
>

p?; 1) p?=false
1

p;>
 1) p?=true



We thus need to show that the result of backpatching and propagation has D? � B?.

LEMMA 104

If a sequent has the form : : :) : : :D? : : : then Algorithm 1 will backpatch D? into the

proof somewhere below the sequent.

Proof: We argue that if a premise of an inference has D? 6= ; then either

1. D? is backpatched (if the rule is ! or in certain cases for a N inference)

2. The conclusion of the inference contains D? in its residue.

The only rules where the D? in the premise and the conclusion are not identical are !, 


and N. The conclusion of the cross rule has all formulae of the form D? which appear
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in either premise. The conclusion of the N rule contains some of the formulae of the

appropriate form which appear in the rule’s premises. The formulae which are not in the

conclusion of the inference are backpatched. All of the formulae of the form D? in the

premise of the ! rule are backpatched. Hence if the formulae of the formD? in a particular

sequent are not backpatched at that inference, they are present in the residue of the root

and hence are backpatched there. �

Note that the backpatching of a multiset D? need not happen at the same place - it is

possible for a N rule to backpatch part of a multiset and pass the rest downwards.

EXAMPLE 16

A proof of the sequent >
 1; p; q N r begins with the inference

>
 1; p; q ) p?; q?=true >
 1; p; r) p?; r?=true

>
 1; p; q N r ) p?=true
N

This inference is backpatched and propagated to yield the quasi-proof

>
 1; p; q; p?; q? ) p?; q?=true >
 1; p; r; p?; r? ) p?; r?=true

>
 1; p; q N r; p? ) p?=true
N

which is then transformed to the following L proof

: >
 1; p; q : >
 1; p; r
: >
 1; p; q N r

N

LEMMA 105

Any sequent of the form : : :) : : :D?=true will have (at least) D? propagated into it by

Algorithm 1.

Proof: By lemma 104 we have that D? must have been backpatched below the sequent.

We then use induction on the structure of the proof from the root to the leaves, to show

that it will be propagated into the sequent. The base case of the induction is the point

where D? was backpatched. The unary rules are obvious, the nullary rules are irrelevant.

The N rule works by definition – if the conclusion of the inference is of the appropriate

form then it has D? propagated into it which also propagates D? into the premises. If

the conclusion of a
 inference is of the appropriate form then if either premise is of the

appropriate form we can propagate the appropriate formulae into it.
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If one of the premises is false the other may get more than D? propagated into it. For

instance, in the previous example the> inference has an emptyD? but has p? propagated

into it.

LEMMA 106

Any sequent occurring in a quasi-proof satisfies the condition Ct
x
0
; D?0 � At

x
0
; B?0.

Proof: From lemma 97 we have that Ct
x
0 � At

x
0. If the original sequent (that is before

backpatching and propagating) violated the condition then by the corollary of lemma 101

we have that the sequent must be tagged with =true and hence by lemma 105 we have

that the violation will be fixed by backpatching and propagating. �

We now need only to show that the result of the algorithm is a proper L proof.

THEOREM 107 (SOUNDNESS)

If �) D? is provable inM then there exists an L proof of ; : �.

Proof: The root of the proof is backpatched and transformed to : �. We then show that

each of the inference rules ofM are backpatched, propagated and transformed into sound

L inferences. Hence the algorithm maps theM proof of �) D? into an L proof of : �.

The 1 rule:

This rule is not backpatched and is never propagated since it is tagged =false. It trans-

forms to

: 1 1

The O rule:

This rule is not backpatched. Let�? be propagated into the rule and let� = (At
x
0; B?0;�?0)�

(D?0; Ct
x
0
) then the rule is transformed to

� : F;G;�;�
� : F OG;�;�

O

The > rule:

This rule is not backpatched. Let�? be propagated into the rule and let� = (At
x
0
; B?0;�?0)�

(At+?
x

0
; B?0) (actually, since At+?

x

0
= At

x
0 we have that � = �) then the transformed
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rule is

� : >;�;�
>

The N rule:

Let @? be the propagated formulae and let � = �t
x [ �?. The result of backpatching

and propagating a N inference is

� : F;�;�tx;�
?;@?; ((�t

x;�
?)� �)) �t

x;�
? � : G;�;�tx;�

?;@?; ((�t
x;�

?)� �)) �t
x;�

?

� : F NG;�;�tx;�
?;@? ) �

N

Let � = (�tx;�
?;@?)� �. Then the translation of the inference into an L inference is

� : F;�; ((�t
x

0
;�?

0
;@?

0
; ((�t

x

0
;�?0)��0))� (�t

x

0
;�?0)) � : G;�; ((�t

x

0
;�?

0
;@?

0
; ((�t

x

0
;�?0)� �0))� (�t

x

0
;�?0))

� : F NG;�;�
N

Observe that

((�tx
0
;�?0;@?

0

; ((�t
x

0
;�?0)� �0))� (�t

x

0
;�?0))

= ((�tx
0
;�?0;@?

0

;�t
x

0
;�?0)� (�t

x

0
;�?0;�0))

= ((�tx
0
;�?0;@?

0

)� �0); ((�t
x

0
;�?0)� (�t

x

0
;�?0))

= ((�tx
0
;�?0;@?

0

)� �0)

= �

So the inference can be rewritten as

� : p;�;� � : q;�;�
� : pN q;�;�

N

The Use rule:

This rule is not backpatched. Let�? be the propagated formulae and let� = (At
x
0
; B?0;�?0)�

(Ct
x
0
; D?0) then the rule propagates and transforms to

� : F 0;�;�

� : F 0;�;�
Use
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which is a sound (if useless!) L inference.

The ! rule:

This rule is not propagated. It is backpatched to

� : F;D? ) D?=x

� :!F;At
x; B

? ) At
x; B

?=false
!

and transforms to
� : F
� :!F

!

The 
 rule:

� : F;�+1;�t+1
x ;�?+1 ) �+1;�t+1

x ;�?+1;�?=x � : G;�;�t
x;�

? ) �t
x;�

?=y

� : F 
G;�;�tx;�
? ) �t

x;�
?;�?=x _ y




This rule is not backpatched. There are four cases:

1. x = y = false in which case there is no propagation and the rule is mapped to

� : F; ((�+1;�t+1
x ;�?+1)0 � (�+1;�?;�t+1

x ;�?+1)0) � : G;�; ((�t
x;�

?)0 � (�t
x;�

?)0)

� : F 
G;�; ((�tx;�
?)0 � (�t

x;�
?;�?)0)




In order for this to be a valid L inference we need to show that the formulae in the

bottom sequent of the rule are split between the left and right top sequents. Note

that we shall take the primes (�
0

) as read in order to avoid notational clutter.

((�;�tx;�
?)� (�;�;�t

x;�
?))

| {z }

Top Left Sequent

; �; ((�t
x;�

?)� (�t
x;�

?))
| {z }

Top Right Sequent

= �; ((�tx;�
?)� (�t

x;�
?;�?))

| {z }

Bottom Sequent

We now show that the left hand side of the equation is equal to the right. The left

hand side is ((�;�tx;�
?)� (�;�;�t

x;�
?));�; ((�t

x;�
?)� (�t

x;�
?)). Rearrang-

ing we obtain �; ((�;�tx;�
?;�t

x;�
?) � (�;�;�t

x;�
?;�t

x;�
?)). We can subtract

�t
x;�

? to yield �; ((�;�tx;�
?) � (�;�;�t

x;�
?)). From lemma 98 we have that

� � �. We let � = �;�0 obtaining �; ((�;�0;�tx;�
?) � (�;�;�t

x;�
?)). We

can subtract the � yielding �; ((�0;�tx;�
?)� (�;�t

x;�
?)). Applying lemma 106

to the conclusion of the inference tells us that �t
x;�

?;�? � �tx;�
?. This allows us
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to lift out the�0 giving�;�0((�tx;�
?)�(�;�t

x;�
?)). But by definition� = �;�0

and so this is just �; ((�tx;�
?)� (�;�t

x;�
?)). But this is just the formulae occur-

ring in the conclusion of the inference so we have a valid L inference.

2. x = true and y = false. Let @? be the propagated formulae, then the rule is

propagated and transformed to

� : F; ((@?;�+1;�t+1
x ;�?+1)0 � (�+1;�?;�t+1

x ;�?+1)0) � : G;�; ((�t
x;�

?)0 � (�t
x;�

?)0)

� : F 
G;�; ((�tx;�
?;@?)0 � (�t

x;�
?;�?)0)




For this to correspond to the L rule for 
 we need to show that

�; ((�tx;�
?;@?

0

)0 � (�t
x;�

?;�?)0)

= ((@?;�+1;�t+1
x ;�?+1)0 � (�+1;�?;�t+1

x ;�?+1)0);�; ((�t
x;�

?)0 � (�t
x;�

?)0)

Consider the right hand side of this equation. We can rearrange the formulae to

obtain �; ((@?;�+1;�t+1
x ;�?+1;�t

x;�
?)0 � (�+1;�?;�t+1

x ;�?+1;�t
x;�

?)0). By

subtracting �t(+1)
x ;�?(+1) we have �; (@?;�+1;�t+1

x ;�?+1)0� (�+1;�?;�t
x;�

?)0.

As before, lemma 98 allows us to define � = �;�0. We can subtract the � and

obtain �; (@?;�0+1;�t+1
x ;�?+1)0 � (�?;�t

x;�
?)0. As before we can apply lemma

106 to the conclusion of the inference and conclude that �t
x;�

?;�? � �tx;�
?;@?.

This allows us to lift out the �0 yielding �;�0 (@?;�t+1
x ;�?+1)0 � (�?;�t

x;�
?)0

which is by definition � (@?;�t+1
x ;�?+1)0 � (�?;�t

x;�
?)0. This shows the desired

equality. Hence the resulting inference is valid in L.

3. x = false and y = true. The reasoning here is analogous to the previous case.

4. x = y = true. Let @? and i? be the propagated formulae. @? gets propagated into
the left premise. i? gets propagated into the right premise. The 
 rule is propa-
gated and transformed into

� : F; ((@?;�+1;�t+1
x

;�?+1)0 � (�+1;�?;�t+1
x

;�?+1)0) � : G;�; ((i?;�t

x
;�?)0 � (�t

x
;�?)0)

� : F 
G;�; ((�t
x
;�?;@?;i?)0 � (�t

x
;�?;�?)0)




For this inference to be valid in L we need to show that

�; ((�tx;�
?;@?;i?)0 � (�t

x;�
?;�?)0)
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= ((@?;�+1;�t+1
x ;�?+1)0�(�+1;�?;�t+1

x ;�?+1)0);�; ((i?;�t
x;�

?)0�(�t
x;�

?)0)

Consider the right hand side of the equation.

((@?;�+1;�t+1
x ;�?+1)0 � (�+1;�?;�t+1

x ;�?+1)0);�; ((i?;�t
x;�

?)0 � (�t
x;�

?)0)

We can rearrange the equation to obtain �; ((@?;�+1;�t+1
x ;�?+1;i?;�t

x;�
?) �

(�+1;�?;�t+1
x ;�?+1;�t

x;�
?)). As before, lemma 98 allows us to define � =

�;�0. We can then subtract the � and use lemma 106 to allow us to lift out the �0

yielding�;�0; (@?;�t+1
x ;�?+1;i?)�(�?;�t

x;�
?)which is just�; (@?;�t+1

x ;�?+1;i?)�

(�?;�t
x;�

?) as desired.

�

4.3 Completeness

Given an L proof it is fairly trivial to find an equivalentM proof — one can simply use

Use inferences after each 
 rule to ensure resources are allocated correctly. Unfortu-

nately the resulting proof is not one which can be found bottom up using a deterministic

search procedure since it applies the Use rule in an “omniscient” way.

In order to have a more useful completeness property we need that for any L proof

there is anM proof which only uses the Use rule deterministically. We define a subclass

of proofs (use-valid) which captures the deterministic use of the Use rule. We then give

an algorithm which given an L proof produces a use-validM proof.

DEFINITION 34

An application of Use is said to be valid if it either occurs immediately beneath a rule

which acts on the side formula of the Use rule or it occurs in a sequence of rules of the

form:

p; p?; At
x; B

? ) At
x; B

?=false
Ax

p; p?
t

x; A
t
x; B

? ) At
x; B

?=false
Use

ptx; p
?t

x; A
t
x; B

? ) At
x; B

?=false
Use

An application of Use is said to be invalid if it occurs other than in one of these two sit-

uations.
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We use the phrase use-valid as shorthand for “all occurrences of the Use rule are

valid”.

Our completeness theorem states that for any L proof there exists a use-valid M

proof. Hence when searching for a proof in M it is sufficient to only apply Use to a

formula when we are about to apply another rule to that formula. That is, we can elimi-

nate Use by modifying each rule to operate on tagged formulae. For example in addition

to
� : F;G;�; At

x; B
? ) Ct

x; D
?=x

� : F OG;�; At
x; B

? ) Ct
x; D

?=x
O

we define the rules:

� : F;G;�; At
x; B

? ) Ct
x; D

?=x

� : (F OG)n;�; A
t
x; B

? ) Ct
x; D

?=x
O

� : F;G;�; At
x; B

? ) Ct
x; D

?=x

� : (F OG)?;�; At
x; B

? ) Ct
x; D

?=x
O

� : F;G;�; At
x; B

? ) Ct
x; D

?=x

� : (F OG)?n;�; A
t
x; B

? ) Ct
x; D

?=x
O

The Lygon implementation uses this idea and hence does not need an explicit Use rule.

Recall that we use the notation�t+? to indicate that all the formulae in� have a�? tag

added. We shall also define the notation �t(+?) to indicate that some (unknown) subset

of the formulae in � has �? tags added.

We shall need a number of lemmas in the construction of the algorithm. These enable

us to “massage” proofs by adding tags and formulae.

LEMMA 108

If there is a use-valid proof of �;�tx;�
? ) �?;�t

x then there is a use-valid proof of

�;�tx;�
?; At

x; B
? ) At(+?)

x ; B?;�?;�t
x.

Proof: We use induction on the structure of the proof. �

LEMMA 109

If there is a use-valid proof of �) �=false then there is a use-valid proof of �; A1 )

A1;�=false.

Proof: By lemma 108 we have a proof of �; A1 ) A(+?)
1 ;�=false. By lemma 101 we
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have that Di � Bi (where Di; Bi are formulae of the form F t
n and Di is on the right of

the) and Bi on the left). Since �; A1 does not contain any occurrence of the�? tag —

that is Bi is empty - we have that Di must be empty. Hence no �? tags are added, that

is, A(+?) = A. �

We define subf � to return all the formulae and sub-formulae occurring in �. The

intuition is that it represents all the formulae that can be generated from � and so we

shall also extend subf � with all instances of formulae where quantifiers are involved.

For example, if � = fp; q N (r � s); 9xt(x)g then (subf �) = fp; q; r; s; r � s; q N

(r � s); t(X)g for any value of X .

LEMMA 110

For any sequent of the form �; At
x; B

? ) Ct
x; D

? in anM proof we have that D? �

(subf �) [B?.

Proof: Induction over the structure of the proof. The only non-trivial case is the 
 rule.

Using the notation of the
 rule we want to show that�?[�? � (subf (�[fF
Gg))[

�?. Applying the induction hypothesis to the left and right premises of the inference yield

respectively that �? � (subf fFg) and �? � �?[ (subf (�[fGg)). Applying lemma

97 to the left premise tells us that � [ �? � �? [ � and that � � �. Hence

�? [ �? � �? [ (subf (� [ fG;Fg))

� �? [� [ (subf (� [ fG
 Fg))

� �? [ � [ (subf (� [ fG
 Fg))

� �? [ (subf (� [ fG
 Fg))

�

In the construction of the algorithm we will find that we need to find proofs with addi-

tional tags at the root. As a general intuition, the tags make it easier to prove something.

Thus if f adds tags and there is a (use-valid) proof of A) : : : then there will be a (use-

valid) proof of (f A)) : : : . Note that in general the residue (the “: : : ”) will be different.

The proof is (as always) by induction. To be able to induce over the binary rules we need

to know exactly what the effect of adding tags is on the residue.
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Determining the effect of adding tags on the residue is slightly tricky since we are

dealing with multisets and as a result it is not obvious where a formula in the residue

comes from. For example consider the proof

>; p1; p?1 ) p?1; p
?
1

>
p?; p; p?) p?

Ax

p?; p?; p?) p?
Use

>
 p?; p; p? ) p?



We now add a�1 tag to the p at the root of the proof. Naı̈vely we reason that p occurs in

the residue and hence adding a tag to it should add a tag to the p? occurring in the residue.

This is correct; however there is another alternative – the residue could have come from

the initial residue. Thus either of the following proofs are possible. The difference be-

tween the two proofs is that the axiom rule uses a different occurrence of p.

>; p2; p
?
1 ) p?2; p

?
1

>
p?1; p; p

? ) p?1
Ax

p?1; p
?; p? ) p?1

Use

>
 p?; p1; p
? ) p?1



>; p2; p

?
1 ) p?2; p

?
1

>
p; p?; p? ) p?

Ax

p?1; p
?; p? ) p?

Use

>
 p?; p1; p
? ) p?




This type of situation makes it non-trivial to reason about the effect on the residue of

adding tags. Matters can be simplified if we assume that it is possible to distinguish be-

tween multiple occurrences of a formula. In particular, this allows us to track where for-

mulae in the residue actually came from. This is a fairly standard assumption and one

way of allowing multiple occurrences of formulae to be distinguished is to give atoms

numerical tags. This is done by giving each atom at the root of the proof a unique nu-

meric identifier and then propagating the identifiers upwards through the proof. The rules

for propagation are mostly obvious with a few exceptions:

� Duplication of formulae (?D) requires the creation of new tags for the atoms in the

copy.

� In some situations (like the Use rule in the above proofs) multiple assignments of

tags are possible. It is crucial to note that whenever more than one assignment of

tags is possible any of the assignments works. This is obvious since multiple tags

are only relevant when we are choosing between identical formulae – if the formu-

lae are identical it does not matter which we choose!
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� The axioms use the same tags for the residue. For example the> rule in the above

proof might look like:

>; a1?; a2; a3? ) a3?
>

....

� The N rule uses identical tags in the non-residue parts of both its premises.

For the purposes of the next lemma we shall assume that we can distinguish somehow

between different occurrences of a formula. In the following lemma, when we say that

something may be done we mean that the choice is determined by the proof and just from

looking at the root sequent we cannot tell which choice will be made.

LEMMA 111

Let A;B;C and D be multisets of (possibly tagged) formulae. Let F be a single (un-

tagged) formula. The following properties hold:

1. If there is a use-valid proof ofA; F ?
i ) B then there is a use-valid proof ofA; F ?+1

i )

C where C differs from B in that if F occurs in B as F ?
i we add one to the tag of

the occurrence. i.e. F ?
n is replaced by F ?+1

n .

2. If there is a use-valid proof of A; Fi ) B then there are use-valid proofs of both

� A; F+1
i ) C where C differs from B in that if F occurs in B either as Fi or

as F ?
i we add one to the occurrence’s tag.

� A; F ?
i ) D where D differs from B in that if F occurs in B as Fi then we

add a �? tag to the occurrence.

3. If there is a use-valid proof ofA; F ? ) B then there is a use-valid proof ofA; F ?
1 )

C where C differs from B in that F ? occurs in B then we add one to the occur-

rence’s tag.

4. If there is a use-valid proof of A; F ) B=false then there is a use-valid proof of

A; F1 ) B=false.
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5. If there is a use-valid proof of A; F ) B=true then there is a use-valid proof of

A; F1 ) C=true where C differs from B in that if F ? occurs in B then we add

one to the occurrence’s tag. i.e. F ? becomes F ?
1 . If F ? does not occur in B then

C differs from B in that it may contain F ?. The latter case reflects that we do not

know whether the formulae in question was consumed by an axiom or a > rule.

6. If there is a use-valid proof of A; F ) B=false then there is a use-valid proof of

A; F ? ) B=false.

7. If there is a use-valid proof of A; F ) B=true then there is a use-valid proof of

A; F ? ) C where C differs from B in that F ? may be added to it.

Proof: Induction over the structure of the proof. The rules 1, >, ! and Ax are easily

verified.

Unary Rules:

In the rules Use andO we can use induction trivially if F is not the principal formula. If

F is the principal formula then we observe that F cannot occur inB by lemma 110 (since

the proof is use-valid the active formula in a Use rule must be decomposed as the next

step) and note that in all induction cases, if F is not in B then a proof with an unmodified

residue is satisfactory (that is, satisfies all clauses of the form “may : : : ”). Thus a proof is

constructed by adding a Use rule immediately beneath a unary inference other than Use.

The N rule:

We note that if F is in exactly one of the premise’s Bs then that premise must be tagged

=true due to the side conditions on theN rule. Properties 1–3 are trivial – if F occurs in

both premise’s B then we must be doing exactly the same thing to both residues so the

residue in the conclusion is also modified accordingly. If F occurs in exactly one of the

premise’s Bs then the modified residue does not get propagated to the conclusion of the

inference. Properties 4–7 are more interesting. There are three scenarios:

1. Both premises are tagged =true. The properties that apply can be readily verified

using a simple application of the induction hypothesis.

2. Both premises are tagged =false. Again, simple application of the induction hy-

pothesis suffices.
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3. One premise is tagged =true and the other is tagged =false. This is the interesting

case. By lemma 101 applied to the =false premise we have thatD? � B?. Hence,

since F is not in B? (it has no tags) it cannot occur in D?. Therefore we cannot

have a situation where adding tags in the =true premise reduces D? and forces a

violation of the side condition in the =false premise. Having verified that illegal

situations cannot arise we can apply the induction hypothesis.

The 
 rule:

We prove the properties using simultaneous induction. We indicate for the proof of each

property which of the seven inductive hypotheses is applied to which of the two premises.

The proofs of properties 1, 2 and 3 are straightforward. For property 1 we apply induc-

tion hypothesis 1 to the left premise and induction hypothesis 3 to the right premise. For

property 2 we apply induction hypothesis 2 to the left premise and depending on whether

F occurs in B as Fi or F ?
i we apply induction hypothesis 1 or 2 to the right premise. For

property 3 we apply induction hypothesis 1 to the left premise and induction hypothesis 3

to the right premise. To prove properties 4 and 6 we observe that if the conclusion of the

inference is tagged =false then both premises must be tagged =false. We apply induc-

tion hypothesis 2 to the left premise and induction hypothesis 4 or 6 to the right premise.

Lemma 101 tells us that that for property 4, F can only occur as Fi in the residue of the

left premise. In proving property 5 we apply induction hypothesis 2 to the left premise.

There are three cases depending on whether F occurs in the left premise’s residue, and

if so, whether it occurs as Fi or F ?
i :

1. IfF does not occur in the left premise’s residue thenF does not occur in the residue

of the right premise or of the conclusion and the proof follows.

2. If F occurs as Fi then we simply apply induction hypothesis 5 to the right premise.

3. if F occurs in the residue of the left premise as F ?
i then we apply induction hypoth-

esis 7 to the right premise and then apply induction hypothesis 5 to it.

To prove property 7 we consider two cases:

1. The right premise is tagged =true: In this case we apply induction hypothesis 2 to

the left premise and induction hypothesis 7 to the right premise.
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2. The right premise is tagged =false: In this case we apply induction hypothesis 2

to the left premise and induction hypothesis 6 to the right premise. In this case F ?

is not added to C.

�

LEMMA 112

If there is a use-valid proof of�;�) �?=true then there is a use-valid proof of�;�1 )

�?;�?
1=true for some � and �.

Proof: Let � = X [ Y [ Z where X? � �? and (Y [ Z) \ � = ; (i.e. X is

all the formulae in � which occur in �). Applying part 5 of lemma 111 we have that

formulae in X have one added to their tag and formulae in (Y [ Z) are possibly added

to �?. Assuming without loss of generality that Y is added to �? this gives us a proof of

�;�1 ) ((� [ Y ) � X); X?
1 which can be written as �;�1 ) �?;�?

1 for some � and

�. �

LEMMA 113

If there is a use-valid proof of �;�) =false then there is a use-valid proof of �;�1 )

=false.

Proof: Corollary of part 4 of lemma 111. �

LEMMA 114

If there is a use-valid proof of �;� ) D? then there is a use-valid proof of �+?;� )

D?;�+? for some � � �.

Proof: Corollary of parts 6 and 7 of lemma 111. �

We now present an algorithm for mapping proofs inL toM. The algorithm (defined

in figure 2) makes use of the following definitions.

DEFINITION 35 (TRANSLATING NULLARY RULES IN ALGORITHM 2)

An axiom is translated as itself:

� : p; p?
Ax

=) � : p; p? ) =false
Ax

� : >;�
>

=) � : >;�) =true
>
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Algorithm 2 Translating L toM proofs

Input: An L proof of � : �

Output: A use-validM proof of � : �) D?=x

Procedure: We process the input top down. At each stage the premise(s) of the current

inference have already been processed and areM proofs of the form �) D?=x.

Rules are translated according to definitions 35 - 38.

DEFINITION 36 (TRANSLATING UNARY RULES IN ALGORITHM 2)

....
� : F;G;�
� : F OG;�

O

We have already translated the proof of � : F;G;� to anM proof of the form � : F;G;�)

D?=x. We then translate the above inference as

....
� : F;G;�) D?=x

� : F OG;�) D?=x
O

DEFINITION 37 (TRANSLATING THE N RULE IN ALGORITHM 2)

TheN rule is translated in the obvious fashion. If the proofs of � : F;� and � : G;� have

been translated toM proofs with respective roots � : F;�) �?=x and � : G;�) �?=y

then we translate the N inference as

....
� : F;�) �?=x

....
� : G;�) �?=y

� : F NG;�) �? \ �?=x ^ y
N

DEFINITION 38 (TRANSLATING THE 
 RULE IN ALGORITHM 2)

The interesting rule (as always!) is the
 rule. Assume that the the proofs of � : F;� and

� : G;� have been translated toM proofs with respective roots � : F;� ) �?=x and

� : G;�) �?=y. In translating the 
 inference there are two cases to consider:
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Case 1 — x is =false

We have a use-valid proof of � : F;�) �?=false. By lemma 101 � must be empty, and

so we have � : F;�) =false. By lemma 113 we have a use-valid proof of � : F;�1 )

=false. By lemma 109 we have a use-valid proof of � : F;�1;�1 ) �1=false.

We can then apply the inference

....
� : F;�1;�1 ) �1=false

....
� : G;�) D?=y

� : F 
G;�;�) D?=y



which has the desired conclusion and is a valid inference with provable premises.

Case 2 — x is =true

We have a use-valid proof of � : F;� ) �=true. By lemma 112 we have a use-valid

proof of � : F;�1 ) �?;�?
1=true for some � and �. By lemma 108 we have a use-valid

proof of � : F;�1;�1 ) �
(+?)
1 ;�?;�?

1=true. Turning to the right hand premise, we

have a use-valid proof of � : G;� ) D?=y. By lemma 114 we have a use-valid proof

of � : G;�(+?) ) D?;�?=y for some � � �. By lemma 108 we have a use-valid proof

of � : G;�(+?);�? ) �?; D?;�?=y. We combine the two proofs using a 
 inference:

....
� : F;�1;�1 ) �?;�?

1;�
(+?)
1 =true

....
� : G;�(+?);�? ) �?; D?;�?=y

� : F 
G;�;�) �?; D?;�?;�?=true



which has the desired conclusion and is a valid inference with provable premises.

Our next few lemmas combine to give us the desired completeness result.

LEMMA 115

Algorithm 2 works for any proof in L.

Proof: Check that the algorithm covers all cases. �

LEMMA 116

In a proof generated by the above algorithm, if a sequent is tagged =false then it must

have an empty residue.

Proof: A simple induction argument on the structure of the proof. Alternatively, this can

be derived as a corollary of lemma 101. �
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LEMMA 117

Algorithm 2 produces valid proofs inM.

Proof: Each of the rules exceptN and
 are translated into an obviously validM infer-

ence. The
 rule is shown to generate validM inferences in definition 38. TheN rule in

M however, differs from that produced by Algorithm 2 in that there are extra conditions

onM’sN rule. We need to show that the inferences produced by the algorithm never vio-

late these conditions. TheN inferences produced by the algorithm have �t
x = �t

x = ;

(The introduction of these is done when processing
 rules. Correctness for this has been

shown) Hence the only condition in which a proof produced by Algorithm 2 can be in-

valid is a violation of the last two side conditions; that is x is =false and �? 6� �? or

y is =false and �? 6� �?. By lemma 116 these conditions are never violated and hence

Algorithm 2 is guaranteed to produce validM proofs. �

THEOREM 118 (COMPLETENESS)

If � : � is provable in L then there exists a proof inM of �).

Proof: By lemmas 115 and 117 we can translate any L proof to a validM proof. �

THEOREM 119 (DETERMINISM)

TheM proof produced by Algorithm 2 is use-valid.

Proof: Algorithm 2 does not introduce Use rules and all of the lemmas used yield use-

valid proofs. �

COROLLARY:If a sequent is provable inM then it has a use-valid proof. (By theorem

107 the sequent has an L proof and by this theorem it has a use-validM proof).

4.4 Selecting the Active Formula

When designing a language based on a multiple conclusion logic one can at design time

impose the constraint that selecting the active formula be done using “don’t care” non-

determinism. Doing this yields a more limited class of formulae but simplifies the im-

plementation. This path was taken in the design ofLC [140] and LO [8]. In the design of

Lygon the opposite choice was made. As a result Lygon has a significantly larger class

of formulae but has to contend with the problem that selecting the active formulae may

have to be done using “don’t know” nondeterminism.
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Although in general selecting the active formulae in Lygon may require backtracking,

in certain situations we can safely commit to the selection. The situations in which Lygon

can safely use “don’t care” nondeterminism to select the active formula can be partially

detected by using permutability properties. In particular we use the results of Andreoli

[6] and Galmiche and Perrier [44]. This section briefly summarises the results of the two

papers. For more details we refer the reader to the papers themselves. Note that there

is a fair amount of overlap in the results of the two papers although their motivation is

different.

There are three classes of formulae that the results of the two papers indicate can be

selected using “don’t care” nondeterminism:

1. Asynchronous formulae

2. Synchronous sub-formulae of a synchronous formula

3. Occurrences of !F where the rest of the goal is of the form ?�

If the topmost connective of a Lygon goal is asynchronous then we can select that

goal and commit to the selection. For example, the Lygon goal ?; p? 
 q?; p O q has

a number of proofs. Since ? is asynchronous we can commit to applying ? � R first

without a loss of completeness. Alternatively, we could select and commit to applying

O�R first and a proof would be possible:

....
p?; p

....
q?; q

p? 
 q?; p; q

�R

p? 
 q?; pO q
O�R

?; p? 
 q?; pO q
?� R

....
p?; p

....
q?; q

p? 
 q?; p; q

�R

?; p? 
 q?; p; q
?� R

?; p? 
 q?; pO q
O� R

Note that as long as there are asynchronous goals we can continue to select an arbitrary

asynchronous goal and committing to the selection.

The second optimisation is an application of focusing (see section 2.4). If we have

just processed a synchronous connective and a sub-formula is itself synchronous then

there is a proof if and only if there is a proof which begins by reducing the synchronous

sub-formula. For example the Lygon goal p 
 (q � r); p? � r; p � r? has a number
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of proofs. Assume that we select the first formula – which must be done using “don’t

know” nondeterminism – for reduction. Then we can select the sub-formula q � r and

be guaranteed of finding a proof if one exists.
....

r; r?

r; p� r?
��R

q � r; p� r?
�� R

....
p; p? � r

p
 (q � r); p? � r; p� r?

� R

The third class of formulae occurs rarely in real Lygon programs and so we do not

discuss it any further.

These observations (which are incorporated in the current version of Lygon) yield a

significant reduction in the nondeterminism associated with selecting the active formula.

Benchmarks [150] indicate that the overhead of implementing these strategies is not sig-

nificant.

The benefit of these strategies varies heavily depending on the program. For pro-

grams which do not use O there is no benefit as formula selection is always trivial. In

certain cases – for example a formula of the form

(1O?O : : :O?)
 : : :

the benefit is considerable and can reduce the number of solutions and the running time

from exponential to linear time.

We now proceed to prove the completeness of the optimisations discussed. Since the

optimisations are refinements of the standard sequent calculus for linear logic, soundness

follows trivially.

THEOREM 120

Given a proof in the standard sequent calculus there is a proof in the lazy-splitting se-

quent calculus which has the same structure up to the insertion of Use rules immediately

before a formula is reduced.

Proof: Algorithm 2 maps proofs in the standard sequent calculus to proofs in the lazy-

splitting sequent calculus. It is easy to verify that the lazy-splitting proof produced con-

serves the structure of the proof. �
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THEOREM 121 (COMPLETENESS OF OPTIMISATIONS)

If there is a proof in the lazy-splitting sequent calculus then a proof search incorporating

the observations above will find it.

Proof: Theorem 6.1 of [44] states that if a sequent is provable then there exists a “nor-

mal” proof – that is, a proof which satisfies the optimisations discussed. According to

theorem 120 there exists a corresponding use-valid lazy-splitting proof. �

4.5 Discussion

We have shown how to eliminate the nondeterminism associated with resource alloca-

tion in Lygon. We have also shown how to apply known permutability results in order

to reduce the nondeterminism associated with selecting the active formula. Both these

optimisations are incorporated in the Lygon interpreter.

Since both of these sources of nondeterminism are exponential, avoiding them is es-

sential for a non-toy implementation. Measurements confirm that these optimisations are

significant [150].

Whilst the method presented for splitting resources between sub-branches is optimal

(in that the
 and> rules are deterministic) the selection of the formula to be reduced is

not. In practice the current system is adequate for the programs we have written.

There are a number of logic programming languages based on linear logic. Some of

these, like LinLog [6] are based on proof-theoretic analyses, as Lygon is, but, to the best

of my knowledge, have not been implemented and hence do not involve the problems of

lazy splitting discussed in this thesis.

Others, like ACL [85, 88, 128] and LO [8–10] use linear logic as motivation and a

design guide for concurrent logic programming. These languages use a somewhat re-

stricted class of formulae which excludes 
. As a result the implementation problems

are correspondingly simpler, in that neither language needs lazy splitting1, and so again

the problems addressed in this paper do not arise.

The last class of linear logic programming languages comprises Lolli [68–70], Fo-

rum [109] and Lygon [57, 122, 149]. These languages attempt to take a large fragment

1Actually ACL includes
 but only in contexts which prevent lazy splitting from being needed.
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of linear logic, implement it and show that the resulting language is expressive and use-

ful.

The notion of lazy splitting was introduced in Lolli [69], and a lazy method of find-

ing uniform proofs (known in [69] as an input-output model of resource consumption)

is given. An extension of this system presented in Hodas’ thesis [66] handles the> rule

lazily. In [32] the notion of lazy splitting is extended to improve the early detection of

failure due to inconsistent resource usage in the two premises of a N rule. It is not clear

to what extent “typical” Lolli or Lygon programs benefit from this optimisation. On the

other hand, optimising the behavior of> was motivated by observed inefficiency in typ-

ical programs.

Lolli is based on a single conclusion logic whereas Lygon is based on a multiple con-

clusion logic. It is actually possible to encode Lygon into Lolli by using a new constant

and allowing resolution to select the formula to be reduced. The goal aO b is translated

to ((a( n)
 (b( n))( n where n is a new constant.

We feel however, that a direct approach is more desirable for a number of reasons.

Firstly – as discussed in section 3.1 – there are problems associated with the blind use

of equivalences derived using full linear logic when the proof search process is goal di-

rected. The relationship between goal directed (i.e. operational) equivalence and logical

equivalence is nontrivial and involves intermediate logics [53]. The logical equivalence

of two formulae only implies operational equivalence if the two formulae are within the

appropriate subset. For example, the two formulae

(a� b)( (a� b)

and

(a( (a� b))N (b( (a� b))

are logically equivalent; however the first is not a valid goal formula and does not have

a uniform proof even though the second does have a uniform proof.

Secondly, and perhaps more importantly, our presentation allows us to simply use the

permutability properties explored in [6, 44] to reduce the nondeterminism associated with

selecting the formula to be reduced. In the Lolli encoding, selecting the next formula to

be reduced is done by the resolution rule. Reducing the nondeterminism under the Lolli
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encoding would require adding a special case to the resolution rule which examines the

body of the clause and accordingly decides whether the clause can be committed to.

Additionally, our solution handles the Lolli language as a simple case in which all

sequents just happen to have a single formula. Our solution is also applicable to Forum

[71].

In addition to the application of this work to the implementation of logic program-

ming languages based on linear logic, the lazy rules above presumably have application

in theorem provers for linear logic [95, 113, 135, 136], where they eliminate a significant

potential source of inefficiency.
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Chapter 5

Applications of Lygon

In this chapter we look at applications of Lygon. The first aim of this chapter is to demon-

strate that Lygon’s linear logic features buy significant expressiveness and allow simpler

solutions to a range of problems. The second aim of the chapter is to develop a method-

ology of Lygon programming.

Finding ways of using new programming constructs can be highly non-trivial. Pro-

gramming idioms such as monads in functional programming languages [141, 142] have

taken a number of years to emerge. Other examples of non-obvious programming idioms

include combinator parsers in functional programming languages [78], difference lists in

logic programming languages etc. [117, 134].

In our examples we develop a number of linear logic programming idioms – particu-

lar ways of using linear logic connectives to achieve a particular behavior. After introduc-

ing Lygon from the programmer’s perspective, we introduce a number of basic idioms.

We then illustrate applications of Lygon to Graph problems, Concurrency and Artificial

Intelligence. In the process of developing solutions to problems we develop program-

ming idioms and illustrate how they are used. We present a Lygon meta-interpreter and

then finish with some miscellaneous examples and discussion.

All of the programs in this chapter are automatically typeset from executable code

and have been run and tested under the Lygon interpreter.
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History

Lygon grew out of some work on the proof-theoretic foundations of logic programming

languages. The fundamental idea behind Lygon is the completeness properties of certain

kinds of proofs in the linear sequent calculus, and the initial work in this area was done in

the second half of 1990. Over the period of the next two years, the operational model of

the language was defined, revised, extended, and, in part, applied to other logics as well,

and the language received its name over dinner one night late in 1992.

The first Lygon implementation appeared in the following year, although there were

still some technical problems with the operational semantics, which were ironed out in

early 1994, and a prototype implementation was completed later that year.

Lygon the programming language is named after Lygon Street. Lygon street is close

to Melbourne University and is known for its restaurants and cafes. There is also a Ly-

gon Road in Edinburgh which is familiar to Harland and Pym. Current information about

Lygon can be found on the web [147]. Information on the Lygon language and implemen-

tation can be found in [146].

5.1 Lygon - A Programmer’s Perspective

It is worth emphasising that at this stage of the language’s development our primary aim

is to experiment with the linear logic features of the language and as a consequence the

other aspects of the language are not as important. In the design and implementation of

the language we have inherited freely from Prolog. For example, the handling of I/O is

impure and the language is not statically typed or moded. A rough slogan that has guided

the design to date is “Lygon = Prolog + Linear Logic”. Since the linear logic aspects are

orthogonal to issues of types, modes and language purity there is no reason for Lygon to

be impure – future work on Lygon may well adopt strong types and modes a la Mercury

[132, 133].
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Syntax

Lygon syntax is similar to Prolog syntax with the main difference that goals and the bod-

ies of clauses are a (subset) of linear logic formulae rather than a sequence of atoms.

Program clauses are assumed to be reusable (i.e. nonlinear). It is possible to specify

program clauses that must be used exactly once in each query. This is done by prefixing

the clause with the keyword linear.

Lygon syntax is described by the following BNF. The notation [x] indicates that x is

optional. As is traditional in logic programming we use a reversed implication ( ) to

write clauses. We define F  G as shorthand for !(G( F ).

Note that the following syntax is a subset of the full Lygon2 syntax derived in section

3.11. This syntax describes what the Lygon interpreter handles. It differs from the full

language by the omission of

1. Program clauses of the form C1 N : : :N Cn

2. Goals of the form D( G – these can be replaced with D?
OG.

3. Goals of the form ?G

4. Goals of the form 8xG

5. Goals of the form D? – two special cases (neg A and ? neg D) are handled.

G ::= G 
 G j G � G j G N G j G O G j ! G

j ? neg D j 1 j ? j > j A j neg A

D ::= [linear] (A1 O : : :O An  G)

Lexical syntax and comments follow the underlying Prolog system. For example:

p q(X) is a valid program clause and p
 (q(1)O (a� b)) is a valid query.

Semantics

The semantics of Lygon from the programmer’s perspective can best be explained by

recourse to an abstract interpreter. An abstract Lygon interpreter operates in a simple

cycle:
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1. Select a formula to be reduced

2. Reduce the selected formula

This repeats until there are no goals left.

The selection step does not occur in Prolog. As discussed in section 4.4, a Lygon goal

may consist of a number of formulae. At each step, we reduce one of these formulae.

In general which formula we choose to reduce first can make a difference to whether a

proof is found. The Lygon interpreter thus may need to select a formulae, and – if the

proof attempt fails – backtrack and select another formula.

The interpreter attempts to reduce this nondeterminism where possible using known

properties of linear logic. This is outlined in section 4.4 and is summarised below.

After selecting a formulae the interpreter reduces the selected formula. The reduction

used is dependent entirely on the top level connective of the selected formula. In the rules

below we denote the linear context (i.e. the rest of the goal and any linear parts of the

program) by C.

When we say “look for a proof of ...” we mean that the goals indicated replace the

goal being reduced. The reduction of a formula in a Lygon goal is governed by the fol-

lowing rules:

A
 B: Split C into C1 and C2 and look for proofs of (C1; A) and (C2; B).

AO B: Look for a proof of (C;A;B).

AN B: Look for proofs of (C;A) and (C;B).

A� B: Look for either a proof of (C;A) or a proof of (C;B).

>: The goal succeeds.

?: Look for a proof of (C).

1: The goal succeeds if the context C is empty.

A: resolve (see below).
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? neg A: Add A to the program and look for a proof of (C).

!A: If C is empty then look for a proof of (A) otherwise fail.

EXAMPLE 17

The goal ((1�?)O (1N>)) has a number of proofs. One proof involves the following

steps:

1. There is only one formula so we select it. We then apply theO rule yielding a goal

consisting of the two formulae 1�? and 1N>.

2. There are now two formulae in the goal. Let us select the first. We apply the �

rule yielding the goal (?; (1N>)).

3. Assume we now decide to select the second formula. We apply theN rule yielding

two goals: (?; 1) and (?;>).

4. We now have two goals which need to be proved independently. Let us consider

the second goal first since it is the simpler of the two. We can choose the second

formula and apply the > rule. The second goal succeeds and we are left with the

first goal.

5. The remaining goal is (?; 1). We attempt to select the second formula but find that

the context is nonempty and we can not apply the 1 rule.

6. We backtrack and select the first formula. The ? rule yields the goal (1) which is

provable using the 1 rule.

Resolution

An atom can be proven in a number of ways:

1. It can be a built in predicate. Builtins are equivalent to 1 in that they can only

succeed in an otherwise empty context. Builtins differ from 1 only in that they

may bind variables and may fail (for example, append([1],[2],X) binds X and ap-

pend([1],[2],[3]) fails).
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2. It can match the axiom rule. The axiom rule states that a context of the form (A; neg B)

whereA andB unify is provable. Note that the context must not have any formulae

other than A and neg B.

3. It can match a program clause. In this case, we nondeterministically select a (unifi-

able) program clause, create fresh variables for it, unify its head with the atom and

replace the atom with its body. This behaviour is identical to Prolog’s.

Multiple headed clauses (that is, clauses of the form p O q  : : : ) are a straight-

forward extension. We create fresh variables for the clause and then unify each of the

atoms in its head with a different atom in the goal. If all unifications are successful then

the atoms unified against are replaced with the body of the clause.

EXAMPLE 18

Our goal is (p(1); q(2); q(1)) and our program is

p(X) O q(X) is(X1,X+1) 
 p(X1).

We select the program clause and attempt to resolve. We firstly unify p(X) and p(1)

yielding the substitution X = 1. We then attempt to unify q(2) and q(X). Since X has

been bound to 1 this unification fails and we attempt to unify the other atom – q(1) – with

q(X). This succeeds and the two atoms – p(1) and q(1) – are removed and replaced with

the clause’s body yielding the goal (q(2); is(X1; X + 1)
 p(X1)).

EXAMPLE 19

Consider the program:

toggle (off 
 neg on) � (on 
 neg off).
linear on.

The goal toggleO off is provable as follows:

1. Firstly, we add the linear parts of the program to the goal. The linear program fact

(linear on) is equivalent to adding (neg on O) to the goal.

2. Our goal then is (neg onO toggleO off). Using two applications of the O rule we

obtain a goal consisting of three formulae: (neg on; toggle; off).
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3. There is never any point in selecting formulae of the form neg A as there is no cor-

responding reduction rule. Hence we consider the other two formulae. Selecting

off will not work - it is not a builtin, there is no program clause and we can not use

the axiom rule.

4. We therefore select toggle. Using the program clause we obtain the goal

(neg on; off; ((off
 neg on)� (on
 neg off))).

5. We select the compound formula and use the � rule to reduce the goal to

(neg on; off; (off
 neg on)).

6. We select the compound formula and use the
 rule. In applying this rule we have

a choice as to how we split the context C. The Lygon implementation does this

splitting lazily and deterministically. In this case it determines that no matter which

way we split the linear context a proof is not possible.

7. We backtrack and try the other alternative of the � rule. The goal is now

(neg on; off; (on
 neg off)).

8. We apply the 
 rule. This gives us the two goals (neg on; on) and (off; neg off)

both of which are provable using the axiom rule.

Selecting the Formula to be Reduced

When selecting the formula to reduce in a goal, the Lygon interpreter uses a number of

heuristics to reduce nondeterminism (see section 4.4).

1. If there are formulae in the goal whose top level connectives are asynchronous then

we can select any one of these formulae and commit to this selection.

2. If we have just processed a synchronous connective and a sub-formula is itself syn-

chronous then we can select the sub-formula for reduction immediately and com-

mit to this selection. This is due to the focusing property.
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EXAMPLE 20

In the goal (a 
 b; c O d; p(X)) we can select the second formula and commit to it. In

the goal (a 
 b; p(X) 
 (q(X) 
 r(X))) if we select the second formula we may need

to backtrack and try the first; however after processing the outermost 
 we can safely

select the sub-formula q(X)
 r(X) using focusing.

Built In Predicates

The Lygon interpreter provides a number of primitive predicates for operations such as

arithmetic, meta-programming and I/O. These are:

- print/1: prints its argument.

- nl/0: prints a newline.

- input/1: reads a Prolog term and binds it to its argument. This is not usable under

the graphical user interface.

- system/1: passes its argument to the system to be executed as a command.

- is/2: evaluates its second argument as a mathematical expression and binds the re-

sult to the first argument. This predicate is inherited from Prolog.

- lt/2: succeeds if both its arguments are numbers and the first is less than the second.

- builtin/1: succeeds if its argument matches a builtin.

- readgoal/1 and readprog/1: read terms and convert them to Lygon goals and pro-

grams respectively. The difference from input/1 is that atoms are tagged. Exam-

ple: If the user types p * q # r. then the call to readgoal/1 returns

atom(p)*atom(q)#atom(r). These are not usable under the GUI.

- prolog/1: passes the argument for evaluation by the underlying prolog system.

This can be used to extend the set of builtins.

- tcl/1: passes its argument to TCL/Tk for evaluation. This can be used to do graph-

ics from within Lygon or to extend the user interface.
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- call/1: call(X) is equivalent to X . It is needed since internally Lygon represents

the atomic goal p(X) as atom(p(X)).

In addition to the built in predicates the example programs given will assume the pres-

ence of the standard Lygon library shown in program 1. Note that a number of the pred-

icates are impure and typical of Prolog code.

5.1.1 The Lygon Implementation

The Lygon implementation (current version: 0.7.1) consists of two components:

1. The Lygon interpreter, and

2. A user interface.

The Lygon interpreter is structured as a Prolog meta-interpreter. The emphasis is on ease

of implementation rather than on performance or robustness. The interpreter is written

in BinProlog1 and consists of some 724 lines of code2.

The core of the interpreter is essentially “just” an implementation of the rules ofM

which were derived in chapter 4 (see figure 4.1 on page 122).

The user interface is written in TCL/Tk3 and consists of some 591 lines of code. The

graphical user interface is depicted in figure 5.1. The user interface and interpreter com-

municate via Unix pipes.

The system integrates the Lygon four port debugger developed by Yi Xiao Xu [153].

The debugger provides an execution trace which can be filtered according to a number

of criteria.

The Lygon programs presented were mostly tested under Lygon 0.7.1. A few (those

requiring textual input for example) were run under Lygon 0.4. The implementation is

available from the Lygon World Wide Web page [147] at

http://www.cs.mu.oz.au/˜winikoff/lygon. For more details on the Ly-

gon implementation and its use see [146].

1Available from http://clement.info.umoncton.ca/˜tarau/
2As counted by wc.
3Available from http://www.sunlabs.com:80/research/tcl/
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Program 1 Standard Lygon Library
Lygon Standard Library

Negation as failure
not(X) once((call(X) 
 eq(Y,succeed)) � eq(Y,fail)) 
 eq(Y,fail).

var(X) not(not(eq(X,1))) 
 not(not(eq(X,2))).

le(X,Y) lt(X,Y) � eq(X,Y).
gt(X,Y) lt(Y,X).
ge(X,Y) lt(Y,X) � eq(X,Y).

output(X) (!(print(X) 
 nl)).

repeat 1 � repeat.

sort([],[]).
sort([X],[X]).
sort([X,YjXs],R) halve([X,YjXs],A,B)
 sort(A,R1)
 sort(B,R2)
merge(R1,R2,R).

merge([],X,X).
merge([XjXs],[],[XjXs]).
merge([XjXs],[YjYs],[XjR]) le(X,Y) 
 merge(Xs,[YjYs],R).
merge([XjXs],[YjYs],[YjR]) gt(X,Y) 
 merge([XjXs],Ys,R).

halve([],[],[]).
halve([X],[X],[]).
halve([X,YjR],[XjA],[YjB]) halve(R,A,B).

append([],X,X).
append([XjXs],Y,[XjZ]) append(Xs,Y,Z).

reverse(X,Y) var(Y) 
 rev(X,[],Y).
reverse(X,Y) not(var(Y)) 
 rev(Y,[],X).

rev([],X,X).
rev([XjXs],Y,R) rev(Xs,[XjY],R).

member(X,[ jY]) member(X,Y).
member(X,[Xj ]).
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Figure 5.1 The Lygon User Interface
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5.2 Basic Techniques

We begin by presenting a number of simple Lygon programs. Some of these demonstrate

generally useful programming idioms which will be used in later sections.

The main theme in this section is the simple manipulation of the linear context. The

linear context is a multiset of linearly negated atoms and can be thought of as a collection

of atomic facts. The two differences between the linear context and a program are that

(i) adding facts to the linear context is a logically pure operation, and (ii) linear facts are

consumed when they are used. This second difference is crucial in that it allows replace-

ment of old information with new. By contrast, classical logic allows pure addition of

facts (using implication) but only allows for the extension of the program. As we shall

see, the linear context can model general state based operations.

We begin with a simple example which uses the linear context to store some state in-

formation. Program 2 (taken from [68, 70]) stores a single bit of information and toggles

it. The effect of a call to toggle in a context containing the fact off is to consume the fact

and add the fact on.

Note that since Lygon programs are implicitly nonlinear we must supply the initial

state as part of the goal. Adding off as a (non-linear) program clause would mean that

even after a toggle we could still prove off from the clause. Although it is possible to

avoid this by having off as a linear program clause we choose not to do this. The prob-

lem with using linear program clauses is that every query gets given an initialised linear

context. Using linear clauses can make the program easier to run for a given goal but

reduces our ability to make other queries.

The derivation of the goal neg off O toggleO on has been described in example 19.

The key point is that once toggle has been called it is no longer possible to prove off.

Program 2 illustrates a common special case of 
. As noted in the previous section,

the proof of the goal A
 B partitions the context between the proof of A and the proof

of B. There are two special cases that are common in Lygon programs. These are when

A is a builtin and when A is an atom which has corresponding linear facts. In the first

case the entire context gets passed to B since builtins are logically equivalent to 1 and

can not use any of the context. In the second case a single linear fact matching A is used
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Program 2 Toggling State
toggle (off 
 neg on) � (on 
 neg off).

go neg off O toggle O show.

show off 
 print(’off’).
show on 
 print(’on’).

by the axiom rule in the proof of A and the remaining context is used in the proof of B.

For example consider the goal (neg p(1) , neg q , p(X) 
 print(X) 
 >) The only

formula which can be usefully selected is the third. This gives us the two goals (neg

p(1), p(X)) and (neg q , print(X) 
>). The first is provable using the axiom rule which

unifies X with 1. In proving the second goal we again use the 
 rule yielding the two

new goals (print(1)) and (neg q ,>). The first of these succeeds and as a side effect prints

1. The second succeeds using the> rule.

The net effect of p 
 G (where p is not defined by a program clause) is to remove a

linear fact matching p from the context and pass the rest of the context to G.

Another connective in Lygon that is often used in a particular way isO. Recall that the

proof of the goalAOB simply looks for a proof ofA;B. IfA andB are both atoms which

have matching program clauses then the two formulae evolve in parallel. A commonly

occurring special case is (neg A)OB which adds the linear fact A to the context and then

continues with B. This is equivalent to A( B.

A third connective that is often used in a certain way is !. Recall that the goal ! G

can be proven if (a) G can be proven, and (b) the linear context is empty. Thus ! is used

to ensure that the goal G is executed with an empty linear context. The pattern H 
 !

G forces H to consume all of the linear resources. An example is the coding of output

in program 1 where the goal ! (print(R) 
 nl) ensures that the linear context has been

consumed. This is important since otherwise it is possible for print to succeed and pass

linear resources to nl. Only when nl is executed does it become apparent that the linear

resources cannot be consumed and the computation backtracks. For example, the goal

(? � neg p) O (print(x) 
 nl) prints two xs followed by a newline whereas the goal

(?� neg p) O !(print(x) 
 nl) prints a single x followed by a newline.



170 CHAPTER 5. APPLICATIONS OF LYGON

Before we move on to look at how linear facts can be collected, it is worth noting that

since Lygon is an extension of Prolog, any (pure) Prolog program will run under Lygon.

In general Lygon’s 
 connective substitutes for Prolog’s conjunction (“,”). Program 3

is a well known Prolog program transcribed into Lygon.

Program 3 Naı̈ve Reverse
append([],X,X).
append([XjXs],Y,[XjZ]) append(Xs,Y,Z).

nrev([],[]).
nrev([XjXs],R) nrev(Xs,R2) 
 append(R2,[X],R).

The linear context can be used to store an initial set of facts which give the input to

the program and after the program has run could contain the resulting output. We need

to be able to report on the contents of the linear context. This can be done by collecting

the linear facts into a data structure and then returning it or printing it.

Consider a linear context which is known to contain any number of unary p facts and

binary q facts. One way of collecting these into a list is the following (see program 4):

collect(X,Y) p(A) 
 collect([p(A)jX],Y).

collect(X,Y) q(A,B) 
 collect([q(A,B)jX],Y).

collect(X,X).

This predicate is called as collect([],X). The linear context is consumed and a list is

bound to X. An alternative encoding is

collect([p(A)jX]) p(A) 
 collect(X).

collect([q(A,B)jX]) q(A,B) 
 collect(X).

collect([]).

Here, the predicate is called as collect(X) and X is bound to a list as before. Note

that the program clause collect([]) is equivalent to collect([]) 1. This clause can only

succeed once the linear context has been emptied.

One problem with both of these definitions concerns backtracking. The elements of a

multiset are not in a defined order whereas the elements of a list are. In converting from
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a multiset to a list we are adding an order. Both versions of collect given are capable of

generating any order and will do so upon backtracking. For example, given the context

(p(1),p(2),q(a,b)) both versions of collect will generate all six orderings of the elements.

If we would like to be able to find alternative solutions to the Lygon query which gener-

ated the relevant linear context then this behavior is a problem – before returning a new

solution we will be given permutations on the order of the elements in the multiset.

We solve this problem by using once to select an arbitrary ordering of the multiset

and prune away other solutions. Program 4 shows two different ways of coding collect.

These two differ in the order of the solutions returned. Since the ordering is arbitrary

anyway this is not important.

The goal go1(X) has the single solution X = [c,b,a,a] and the goal go2(X) has the

single solution X = [a,a,b,c].

Program 4 Collecting Linear Facts
go1(X) neg a O neg b O neg c O neg a O collect([],X).

First version -- called as collect([],X)
collect(X,Y) get(Z) 
 collect([ZjX],Y).
collect(X,X).

get(X) once( (eq(X,a) 
 a) � (eq(X,b) 
 b) � (eq(X,c) 
 c)).

go2(X) neg a O neg b O neg c O neg a O collect(X).
Second version -- called as collect(X)
collect([ZjX]) get(Z) 
 collect(X).
collect([]).

A related problem which is non-trivial to solve in Prolog – and which has been used

to motivate the need for combining embedded implications and negation as failure – in-

volves determining whether a number of clauses of the form r(1), : : : ,r(n) contains an

odd or even number of clauses.

The following proposed solution [25, 40] uses implication to add a mark to facts

which have been processed and uses negation as failure to ensure that marked facts are
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not processed a second time.

even :- not odd.
odd :- select(X), (mark(X) => even).
select(X) :- r(X), not mark(X).

The Lygon solution to this problem simply combines programs 2 and 4. We need

to collect each program clause; however instead of constructing a list of the collected

clauses we simply toggle an even/odd indicator for each clause collected, see program 5.

The goal neg count(even) O neg r(1) O neg r(2) O check(X) returns the answer

X = even. Once check(X) has consumed all of the r(i) facts it reduces (using the second

clause) to count(X) and the axiom rule unifies X with the odd/even indicator stored in the

linear fact.

Program 5 Counting Clauses
check(Y) once(r(X)) 
 (toggle O check(Y)).
check(X) count(X).

toggle (count(even) 
 neg count(odd)) � (count(odd) 
 neg count(even)).

An alternative solution in Lygon which is closer to the solution using implications

and negations is given in program 6. An empty context (i.e., zero clauses) is even. A

context is even if the context with one less fact is odd and vice versa. The goal neg r(1)

Oneg r(2) O check(X) returns X = even.

Program 6 Counting Clauses – Alternative Version
check(even) even.
check(odd)  odd.

even.
even once(r(X)) 
 odd.
odd  once(r(X)) 
 even.

A property that is used in programs 4 and 5 is that all linear facts must by default be

used exactly once. In certain situations (for example finding paths as described in the
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following section) it is desirable to allow facts to be used at most once, that is, we would

like to be able to ignore certain facts. This behavior is known as affine since it is precisely

what affine logic [89] provides.

We can simulate affine facts by using >. Recall that > succeeds in any context. In

some sense it can be thought of as a “cookie monster” which consumes all the linear

resources it is given.

If we have a goal G and a linear context � then the goal � O (G 
 >) allows G to

use a subset of �. Intuitively, � is split between G and> – any linear facts which are not

used in G are consumed by >.

Although intuition suggests that > must occur “after” G, in actual fact the goal �O

(> 
 G) works equally well. What happens is that the tags described in chapter 4 are

used to pre-weaken �. The lazy > rule marks all of the formulae in � as affine and then

passes them to G.

A useful variation on this allows us to combine affine and linear facts. Suppose �

contains linear formulae which must be used and � contains formulae which we may

ignore. Then the formula

�O (>
 (�OG))

captures the desired behavior. For example, in program 7 go1 and go2 succeed but go3

fails. This sort of behavior is used in program 12.

Program 7 Affine Mode
go1 neg p O (> 
 (neg q O (q))).
go2 neg p O (> 
 (neg q O (q 
 p))).
go3 neg p O (> 
 (neg q O (p))).

We have seen how the linear context can be used to store simple state. We now show

how a library of operations can be constructed which uses the linear context to simulate

an imperative store.

Consider a binary linear fact m(A,V) where A represents the address of the memory

cell and V its value. The goal m(1,�)( G adds memory cell 1 containing a certain well

known value and proceeds with G. In Lygon this would be written as neg m(1,�) O G.



174 CHAPTER 5. APPLICATIONS OF LYGON

The goal m(1,X) 
 G binds X to the value in memory cell 1 and proceeds with G.

Note that this read operation is destructive. In order to allow G to re-read the memory

cell we must recreate it using a goal of the form m(1,X) 
 (neg m(1,X) O G).

These goals can be encapsulated into an abstract data type for an imperative store

using the operations newcell/3, lookup/3 and update/3. Note that we need to be able to

specify that goals happen in a certain sequence. We do this by using a continuation pass-

ing style.

Program 8 State Abstract Data Type
newcell(Id,Value,Cont) neg m(Id,Value) O call(Cont).
lookup(Id,Value,Cont) m(Id,Value) 
 (neg m(Id,Value) O call(Cont)).
update(Id,NewValue,Cont) m(Id, ) 
 (neg m(Id,NewValue) O call(Cont)).

As an example using the above code, consider the following simple imperative code
to sum a list of numbers

sum := 0;

while sumlist not empty do
begin

sum := sum + head sumlist;
sumlist := tail sumlist;

end

return sum;

This can be written in Lygon quite simply (see program 9). Note that we need a> in

the second clause of sumlist to delete the memory cells once we are finished with them.

This could be added to the state ADT as another operation. The goal sum([1,5,3,6,7],X)

yields the solution X = 22.

Program 9 State Based Sum
sum(List,Result) newcell(sum,0, newcell(sumlist,List, sumlist(Result))).
sumlist(R) lookup(sumlist,[NjNs], lookup(sum,S,

(is(S1,S+N) 
 update(sum,S1, update(sumlist,Ns, sumlist(R)))))).
sumlist(R) lookup(sumlist,[], lookup(sum,S, eq(S,R) 
 >)).
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The final example in this section applies the state based idiom to solve a problem

with I/O. Programs in an impure logic programming language such as Prolog do input

and output using side effects. One problem with this is that output performed in sub-

computations which fail and backtrack is visible. The output produced by a Prolog pro-

gram which backtracks over I/O operations can be confusing.

In Lygon it is possible to maintain an output list in the linear context and only print the

list once the relevant sub-computation has succeeded. This technique is particularly use-

ful in concurrent Lygon programs (see section 5.4) which tend to exhibit a large number

of solutions corresponding to all possible interleaved executions.

We begin by creating a linear fact t([]). Goals of the form print(X) 
 G are replaced

by pr(X,G) where pr is defined as (see program 10):

pr(X,G) t(R) 
 (neg t([XjR]) O call(G)).

Note that pr is just an imperative style lookup followed by an update. The query go

succeeds once and prints 2 and 3. If print had been used it would have printed 1 as well.

The role of the ?
 t(X) 
 : : : is to allow the goal (backtrack) to succeed normally

and collect the printing to be done using a proof of the following form:

....
1;?

neg t([2,3]); t(X)
Ax;X=[2,3]

....: : :
neg t([2,3]); t(X)
 : : :


�R

1; neg t([2,3]);?
 t(X)
 : : :

�R

....
backtrack; neg t([]);?
 t(X)
 : : :

A general idiom that is demonstrated in this program (and in program 9) is the use of a

continuation passing style to encode sequentiality. If we wish to make a change to the lin-

ear context and then run a goal then we cannot write makechange
 goal since additions

made to the context in makechange are not visible to the goal. If we write makechange

O goal then the changes made are visible to the goal but the goal could also use the old

state. The way to obtain correct sequencing is to modify makechange to accept an extra

argument and to call that argument when it has finished changing the context. We then

write makechange(goal).
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Program 10 Batching Output
go neg t([]) O backtrack O (? 
 t(X) 
 !(reverse(X,RX) 
 print(RX) 
 nl)).
pr(X,G) t(R) 
 (neg t([XjR]) O call(G)).
backtrack pr(1,fail) � pr(2,pr(3,1)).
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5.3 Graphs

Graphs are an important data structure in computer science. Indeed, there are many ap-

plications of graph problems, such as laying cable networks, evaluating dependencies,

designing circuits and optimization problems. The ability of Lygon to naturally state and

satisfy constraints, such as that every edge in a graph can be used at most once, means

that the solution to these problems in Lygon is generally simpler than in a language such

as Prolog.

This observation was made independently by Paul Tarau in the later versions of Bin-

Prolog which include a form of linear4 predicates.

One of the simplest problems involving graphs is finding paths. The standard Prolog

program for path finding is the following one, which simply and naturally expresses that

the predicate path is the transitive closure of the predicate edge, in a graph.

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Whilst this is a simple and elegant program, there are some problems with it. For

example, the order of the predicates in the recursive rule is important, as due to Prolog’s

computation rule, if the predicates are in the reverse order, then goals such aspath(a,Y)

will loop forever. This problem can be avoided by using a memoing system such as XSB

[144], or a bottom-up system such as Aditi [139]. However, it is common to re-write the

program above so that the path found is returned as part of the answer. In such cases, sys-

tems such as XSB and Aditi will only work for graphs which are acyclic. For example,

consider the program below.

path(X,Y,[X,Y]) :- edge(X,Y).

path(X,Y,[X|Path]) :- edge(X,Z), path(Z,Y,Path).

If there are cycles in the graph, then Prolog, XSB and Aditi will all generate an infinite

number of paths, many of which will traverse the cycle in the graph more than once.

4Actually affine
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The problem is that edges in the graph can be used an arbitrary number of times, and

hence we cannot mark an edge as used, which is what is done in many imperative so-

lutions to graph problems. However, in a linear logic programming language such as

Lygon, we can easily constrain each edge to be used at most once on any path, and hence

eliminate the problem with cycles causing an infinite number of paths to be found.

The code is simple; the main change to the above is to load a “linear” copy of the

edge predicate, and use the code as above, but translated into Lygon. Most of this is mere

transliteration, and is given in program 11.

Figure 5.2 Graph 1

a

e

b c

d

The extra predicate trip is introduced so that not every path need use every edge in

the graph. As written in program 11, path will only find paths which use every edge in

the graph (and so path can be used directly to find Eulerian circuits, ie. circuits which

use every edge in the graph exactly once). However, the trip predicate can ignore certain

edges, provided that it does not visit any edge more than once, and so the trip predicate

may be considered the affine form of the predicate path.

The goal graph (which describes figure 5.2) is used to load the linear copy of the

graph, and as this is a non-linear rule, we can load as many copies of the graph as we

like; the important feature is that within each graph no edge can be used twice. We can

then find all paths, cyclic or otherwise, starting at node a in the graph with the goal graph

O trip(a, ,P). This goal yields the solutions below.

P = [a,b,c,d,e]

P = [a,b,c,d,a]
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P = [a,b,c,d]

P = [a,b,c]

P = [a,b]

We can also find all cycles in the graph with a query such as graph O trip(X,X,P)

which yields the solutions:

X = a, P = [a,b,c,d,a]

X = b, P = [b,c,d,a,b]

X = d, P = [d,a,b,c,d]

X = c, P = [c,d,a,b,c]

Program 11 Path Finding
graph neg edge(a,b)O neg edge(b,c)O neg edge(c,d)O neg edge(d,a)O neg edge(d,e).

Path: the naı̈ve path predicate. Note that in Lygon this handles cycles.
path(A,B,[A,B]) edge(A,B).
path(A,B,[AjR]) edge(A,C) 
 path(C,B,R).

trip(X,Y,Z) > 
 path(X,Y,Z).

This example suggests that Lygon is an appropriate vehicle for finding “interesting”

cycles, such as Hamiltonian cycles, ie., those visiting every node in the graph exactly

once. We can write such a program in a “generate and test” manner by using the path

predicate above, and writing a test to see if the cycle is Hamiltonian. The key point to note

is that we can delete any edge from a Hamiltonian cycle and we are left with an acyclic

path which includes every node in the graph exactly once. Assuming that the cycle is

represented as a list, then the test routine will only need to check that the tail of the list

of nodes in the cycle is a permutation of the list of nodes in the graph. Hodas and Miller

[70] have shown that such permutation problems can be solved simply in linear logic

programming languages by “asserting” each element of each list into an appropriately

named predicate, such as list1 and list2, and testing that list1 and list2 have exactly the

same solutions.

The code to do this assertion is below; note that this may be thought of as a data con-

version, from a list format into a predicate format.
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perm([XjL],L2) neg list1(X) O perm(L,L2).

perm([], L2) perm1(L2).

perm1([Xjl]) neg list2(X) O perm1(L).

perm1([]) check.

Once both lists are loaded, we call the predicate check, which will ensure that the two

lists are permutations of each other. This predicate is particularly simple to write, and is

given below. Note that if the input is given as predicates (i.e., [1,2] would be rendered

as the multiset of linear facts list1(1) , list1(2)) rather than lists, then this is all the code

that we would need to write:

check list1(X) 
 list2(X) 
 check.

check.

Note that the second clause is equivalent to check 1 and will only succeed if the

linear context is empty. The definition of check is thus deterministic. The first clause

will succeed provided that there is a common solution to list1 and list2; if this is not the

case, then the only way to succeed is for both predicates to be exhausted. Hence, the only

way for the test to succeed is if the two arguments to perm contain the same multiset of

elements – that is, they are permutations of each other.

An interesting point raised by this example is that the representation of the data as re-

sources, rather than in the traditional list, is potentially more efficient. The most common

data structure used in Prolog programs is a list, and it seems that Prolog programmers

have a tendency to overuse lists. It is not uncommon to find that some general collec-

tion of objects has been implemented as a list, even when the order in which items are

represented is not important. Lists have the property that access to the nth element takes

n operations. However, if the same collection is represented as a multiset of formulae,

then there is the possibility for more flexible access, as there is no order of access imposed

by the framework. Furthermore, by careful utilisation of indexing techniques, it would

seem that it is possible to provide constant or near-constant time access to an arbitrary

element of the collection, and so Lygon has the potential for a more efficient represen-

tation of collections where the sequence of elements is not important. This observation
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is borne out by the work in [137, 138] where a speedup factor of 25 is reported for small

Lolli programs (and a larger speedup is reported for larger programs).

The only remaining task to complete the code for the Hamiltonian cycle program is

to write the code to extract the list of nodes in the graph from its initial representation.

As this code is not particularly insightful, we omit it for the sake of brevity and assume

that the nodes of the graph are given. The full Lygon program for finding Hamiltonian

cycles is given below (program 12).

The role of the> in go is to make the edge predicate affine (i.e., not every edge need

be used). Note that the nodes remain linear and so must be used. Given the query go(P),

the program gives the solutions:

P = [c,d,a,b,c]

P = [d,a,b,c,d]

P = [b,c,d,a,b]

P = [a,b,c,d,a]

Program 12 Hamiltonian Cycles
go(P) graph O (> 
 (nodes O hamilton(P))).

graph neg edge(a,b) O neg edge(b,c) O neg edge(c,d) O neg edge(d,a).
nodes neg node(a) O neg node(b) O neg node(c) O neg node(d).

path(X,Y,[X,Y]) edge(X,Y).
path(X,Y,[XjP]) edge(X,Z) 
 path(Z,Y,P).

all nodes([]).
all nodes([NodejRest]) node(Node) 
 all nodes(Rest).

hamilton(Path) path(X,X,Path) 
 eq(Path,[ jP]) 
 all nodes(P).

A problem related to the Hamiltonian path is that of the travelling salesman. In the

travelling salesman problem we are given a graph as before. However each edge now has

an associated cost. The solution to the travelling salesman problem is the (or a) Hamil-

tonian cycle with the minimal total edge cost. Given a facility for finding aggregates,
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such as findall or bagof in Prolog, which will enable all solutions to a given goal

to be found, we can use the given program for finding Hamiltonian cycles as the basis

for a solution to the travelling salesman problem. This would be done by simply finding

a Hamiltonian cycle and computing its cost. This computation would be placed within

a findall, which would have the effect of finding all the Hamiltonian cycles in the

graph, as well as the associated cost of each. We would then simply select the minimum

cost and return the associated cycle. Note that as this is an NP-complete problem, there

is no better algorithm known than one which exhaustively searches through all possibil-

ities.

In order to directly implement the solution described above, aggregate operators in

Lygon are needed. As these are not yet present we do not give the code for this problem

here.

Another useful algorithm operating on graphs is the topological sort, which is often

applied to the resolution of dependency problems. One application of topological sorting

is to find an ordering of a set of dependent actions such that each action is preceded by

the actions on which it depends.

The input to the algorithm is a directed acyclic graph (DAG), and the output is an or-

dering of the nodes in the graph. The algorithm to topologically sort a DAG is as follows:

1. Select a random node,

2. Recursively topologically sort its descendants,

3. Add the node to the front of the output.

This repeats until all nodes have been processed. Note that any node with multiple par-

ents will be processed more than once. Attempting to process a node for the second or

subsequent time should succeed without doing anything. This behavior is given by get-

node and getlink. If the node has already been processed then getnode succeeds returning

the empty list. The call to getlink with an empty list returns an empty list of descendants.

The net effect is that topologically sorting a node which has already been processed suc-

ceeds quietly. Note the use of the operator once; the goal once(G) is operationally the

same as the goal G, except that once(G) will succeed at most once. In this context the

once is used to simulate an if-then-else construct.
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The predicate sort selects a random unprocessed node and topologically sorts its de-

scendants (using tsl). This repeats until the graph has been completely processed. The

predicate tsl topologically sorts each node in a list of nodes using ts. The code is given

in program 13.

Figure 5.3 Graph 2
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For a given graph there are many orderings which are valid topological orderings.

For example using the graph in figure 5.3 we can apply a topological sort using the query

sort(X) which returns the first solution X = [g,f,e,d,c,b,a].

If we ask the system to find alternative solutions it comes up with the following dis-

tinct solutions:

X = [g,f,e,d,c,b,a]

X = [g,f,e,d,b,c,a]

X = [g,f,e,b,d,c,a]

X = [f,g,e,d,c,b,a]

X = [f,g,e,d,b,c,a]

X = [f,g,e,b,d,c,a]

Many graph search problems make use of either a depth-first search or a breadth-first

search; given a set of alternative paths to follow, a depth-first search will generally ex-

plore children before siblings, whereas a breadth-first search will generally explore sib-

lings before children (an analogy is that depth-first search is like an escapee from a jail

who tries to get as far away from the jail as possible, whereas breadth-first search is like

the police looking for the escapee).

Clearly for either of these processes it is important to detect cycles in the graph, in
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Program 13 Topological Sorting
linear node(d,[d]). linear link(a,[b,c]).
linear node(a,[a]). linear link(b,[e]).
linear node(e,[e]). linear link(c,[d]).
linear node(b,[b]). linear link(d,[g,e]).
linear node(f,[f]). linear link(e,[g,f]).
linear node(c,[c]). linear link(f,[]).
linear node(g,[g]). linear link(g,[]).

go sort(X) 
 output(X).

sort(R) node( ,[N]) 
 link(N,L) 
 tsl(L,R1) 
 sort(R2) 
 append(R1,[NjR2],R).
sort([]).

ts(Node,R) getnode(Node,N) 
 getlink(N,L) 
 tsl(L,R1) 
 append(R1,N,R).
tsl([],[]).
tsl([NjNs],R) ts(N,R1) 
 tsl(Ns,Rs) 
 append(R1,Rs,R).

getlink([],[]).
getlink([N],L) link(N,L).

getnode(N,R) once(node(N,R) � eq(R,[])).

order to avoid infinite searches. As above, the ability to specify that each edge be used

at most once ensures that the search will always terminate.

In program 14 the predicate search does the searching. Its first argument is a list of

nodes to be explored, its second argument is a list of the nodes which have been examined

and its third argument is the node being searched for. At each step we take the head node

to be explored and (if it is not the desired node) add its descendants to the list of nodes

to be explored using expand.

The difference between a breadth-first and depth-first (program 15) search is the order

in which the new child-nodes are appended with the old list. Note that this program can

be easily generalised to other sorting orders – for example, best first search.

As in program 13 we use getnode to handle nodes which are explored more than once.

The code is given below. Given the query find(s,f) the breadth-first version explores the
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nodes [s,o,m,p,q,n,f] and the depth-first version explores the nodes [s,o,p,f]. The graph

represented by the collection of linear clauses is given in figure 5.4.

Figure 5.4 Graph 3
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Program 14 Breadth First Search
find(S,E,P) search([S],P,E).
find(S,E) find(S,E,P) 
 print(P) 
 nl.

expand([YjYs],Nqueue) getnode(Y, L) 
 append(Ys, L, Nqueue).

The top in the following clause consumes unused nodes.
search([KjXs], [K], K) >.
search([XjXs], [XjP], K) not(eq(K,X)) 
 expand([XjXs], Nq) 
 search(Nq, P,K).

This allows nodes to be referenced multiple times.
getnode(N,R) once(node(N,R) � eq(R,[])).

linear node(s, [o,m]).
linear node(m, [n,f]).
linear node(n, [f]).
linear node(o, [p,q]).
linear node(p, [f]).
linear node(q, [f]).
linear node(f, []).

Program 15 Depth First Search
find(S,E,P) search([S],P,E).
find(S,E) find(S,E,P) 
 print(P) 
 nl.

expand([YjYs],Nqueue) getnode(Y, L) 
 append(L, Ys, Nqueue).

The top in the following clause consumes unused nodes.
search([KjXs], [K], K) >.
search([XjXs], [XjP], K) not(eq(K,X)) 
 expand([XjXs], Nq) 
 search(Nq, P,K).

This allows nodes to be referenced multiple times.
getnode(N,R) once(node(N,R) � eq(R,[])).
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5.4 Concurrency

It is folklore that linear logic is good at expressing concurrency. Let us begin by distin-

guishing between concurrency and parallelism since (in this context) linear logic does

not actually appear to offer any advantages to the latter. A concurrent program is one

where the logic of the program involves multiple, independent threads of activity. Exam-

ples include any distributed system, an email system, multi-player games etc. Typically,

the computation is affected by timing issues and is non-deterministic. A parallel program

is one which is run on multiple processors with the aim of attaining better performance.

Often, the result of the computation is deterministic.

A number of linear logic programming languages are targeted at concurrent applica-

tions (e.g. ACL [85, 88, 128] and LO [7–10, 29, 42]) and it has been shown that much of

the � calculus can be mapped into linear logic [108].

In this section we show how various aspects of concurrency can be expressed in Ly-

gon. Some aspects of concurrency that we shall look at are [17]:

1. Specifying multiple processes,

2. Communication, and

3. Synchronisation.

These are demonstrated in programs 16 and 17.

We also show how a range of other paradigms for concurrent programming can be

simply and easily embedded in linear logic. Specifically, we embed the Chemical reac-

tion metaphor for concurrent programming [22], the co-ordination language Linda [27,

28], the Actors paradigm [2] and Petri Nets [120]. We finish this section with a solution

to the dining philosophers problem.

We begin with a simple example which illustrates how we can program two commu-

nicating processes in Lygon. Recall that a clause of the form a O b G is applied to a

goal of the form a , b , � to yield the new goal G, �.

Program 16 defines two communicating processes – a consumer and a producer. The

first aspect of concurrent programming – specifying multiple processes – is simple in

Lygon. A goal of the form F O G specifies that F and G evolve concurrently.
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Communications between the two processes is achieved by adding and removing goals.

It is also possible to communicate using linearly negated atoms which have the advantage

of being more obviously passive messages. The disadvantage is primarily a cluttering of

the syntax.

The first clause of produce states that under appropriate conditions an ack message

and a produce(3) process can evolve to produce(2) and a mesg(1).

Note that unlike standard concurrent logic programming languages such as Strand

[43], GHC [125, chapter 4], Parlog [50] and [125, chapter 3] and Concurrent Prolog [125,

chapters 2 & 5] communication is orthogonal to unification. Unification (the underlying

primitive operation of logic programming) is not tampered with.
The goal go(3) behaves as follows:

go(3)
�! produce(3) O consume(0) O ack
�! produce(3) , consume(0) , ack
�! lt(0,3) 
 is(N1,3-1) 
 (mesg(1) O produce(N1)) , consume(0)
�! mesg(1) O produce(2) , consume(0)
�! mesg(1) , produce(2) , consume(0)
�! is(N1,0+1) 
 (consume(N1) O ack) , produce(2)
�! consume(1) O ack , produce(2)
�! consume(1) , ack , produce(2)
...
�! consume(3) , ack , produce(0)
�! consume(3) , finished
�! print(3) 
 nl.
...

Program 16 Communicating Processes
go(N) produce(N) O consume(0) O ack.

produce(N) O ack lt(0,N) 
 is(N1, N-1) 
 (mesg(1) O produce(N1)).
produce(0) O ack finished.

consume(N) O mesg(X) is(N1,N+X) 
 (consume(N1) O ack).
consume(N) O finished print(N) 
 nl.
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An important aspect of concurrent programming is mutual exclusion. The basic idea

is that we have a number of processes. A section of each process is designated as a crit-

ical region. We need to guarantee that at most one process is in its critical region at a

given time. This can be done by using a lock – before entering its critical region a pro-

cess attempts to acquire the lock. If the lock can be acquired then the process proceeds;

otherwise it suspends and waits for the lock to become free.

In program 17 the lock is modelled by the goals ex and noex. Exactly one of these

should be present at any time. The presence of ex means that the lock is free and the

presence of noex that the lock has been acquired.

Processes access the lock using the predicates:

- ask(C) which attempts to acquire the lock and calls the continuation C if the attempt

succeeds, suspending otherwise.

- rel(C) which releases the lock and calls the continuation C.

Note that the program uses the technique presented in program 10 to batch its output.

The predicate p1 acquires the lock, prints ’p1a’, prints ’p1b’ and then releases the

lock. Note that in order for the lock to actually be useful we need to take two separate

printing actions. The predicate p2 acquires the lock, prints ’p2a’ and then releases the

lock.

There are three visible events that occur. Since p1amust occur before p1b there are

three possible executions. The use of the lock preventsp2a from occurring betweenp1a

and p1b. This eliminates one of the possible executions leaving p1a, p1b, p2a and

p2a, p1a, p1b as possible results.

Note that because the Lygon implementation uses “don’t know” non-determinism it

is possible to backtrack and enumerate all possible executions of the concurrent program.

This allows us to verify that the program is correct by automatically exploring every pos-

sible execution.

We have seen how Lygon can express the basic mechanisms of concurrency. In the re-

mainder of this section we provide evidence that linear logic in general and Lygon specif-

ically is expressive in this domain. We embed a number of paradigms for concurrency

in Lygon. As we shall see, in all cases the embedding is direct and straightforward.
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Program 17 Mutual Exclusion
ex O ask(C) noex O call(C).
noex O rel(C) ex O call(C).

go(X) ex O p1 O p2 O neg t([]) O (neg ex 
 t(X)).

p1 ask(t(X) 
 (neg t(p1a.X) O (t(X) 
 (neg t(p1b.X) O rel(?))))).
p2 ask(t(X) 
 (neg t(p2a.X) O rel(?))).

The chemical reaction paradigm [22] views a concurrent program as a solution of re-

acting molecules. Chemical reactions between molecules are local. This paradigm forms

the basis of the language Gamma [18].

Program 18 gives an example of a simple reaction. Note that since Lygon (like most

logic programming languages) is executed using backwards chaining on clauses the im-

plications are reversed. That is, a clause of the form a b indicates that a can be rewrit-

ten to b. In the program o O o O h2 O h2 is rewritten first to o2 O h2 O h2 and then to

h2o O h2o.

Program 18 Chemical Paradigm
o O o o2.
o2 O h2 O h2 h2o O h2o.

go o O o O h2 O h2 O (neg h2o 
 neg h2o).

Another model for concurrency is the co-ordination language Linda [27, 28]. Linda

provides four primitive operations which can be added to any language to yield a con-

current programming language. Versions of Linda have been built on top of C, Scheme,

Modula-2, Prolog and other languages. Linda’s basic abstraction is of a shared distributed

tuple space. The primitive operations provided are add, read and remove a tuple from the

tuple space. The fourth primitive operation (eval) creates a new process.

These operations can easily be specified in Lygon; witness program 19. Note that this

is a generalisation of the state ADT given in program 8.
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Program 19 Linda
in(X,G) tup(X) 
 call(G). Remove a tuple
out(X,G) neg tup(X) O call(G). Add a tuple
read(X,G) tup(X) 
 (neg tup(X) O call(G)). Non-destructively read a tuple
eval(X,G) call(X) O call(G).

The Actor model [2] is an abstraction of concurrent processes. An actor is activated

when it receives a message. It can respond by

- Sending more messages,

- Creating new actors, and

- Changing its local state

If we encode an actor as actor(Id,State) and a message as mesg(Id,Args) then a rule
describing how an actor responds to a message can be written as

actor(Id,State) O mesg(Id,Args) 
actor(NewId,S) O : : : O Create new actors
mesg(NewId,A) O : : : O Send messages
actor(Id,NewState). Update local state

The example below defines a bank account actor. This actor can respond to three

types of messages:

1. A balance query

2. A request to withdraw funds

3. A deposit request

We also add a shutdown request which terminates the actor.

Note that the actor model has no natural notion of sequentiality – message receipt

is not guaranteed to be ordered. This fits in with the execution semantics of the Lygon

realisation of the model. The goal go creates an actor with a balance of 0 and sends it a

request to withdraw $20, a request to deposit $30 and a balance query. The goal has six

solutions which correspond to six different message receipt orders. If the deposit request
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is received after the withdraw request then the withdraw request fails and the final balance

is $30, otherwise the final balance is $10. The balance query can occur:

1. Before either action (result 0),

2. After both actions (result 10 or 30 depending on the ordering of the other two ac-

tions)

3. Between the actions (result 30 or 0 depending on the ordering of the other two ac-

tions)

The goal go produces the following output:

Balance query: 0
Withdraw successful: yes
Final Balance: 10

Balance query: 0
Withdraw successful: no
Final Balance: 30

Balance query: 30
Withdraw successful: yes
Final Balance: 10

Balance query: 10
Withdraw successful: yes
Final Balance: 10

Balance query: 0
Withdraw successful: no
Final Balance: 30

Balance query: 30
Withdraw successful: no
Final Balance: 30

Our final example of embedding a concurrent model in Lygon is Petri nets. A Petri

net [120] consists of labelled places (the bigger circles), transitions and tokens (the filled

black circles).
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Program 20 Actors
actor(Id,Val) O mesg(Id,balance(Val)) actor(Id,Val).
actor(Id,Val) O mesg(Id,deposit(X)) is(NV, Val + X) 
 actor(Id,NV).
actor(Id, Val) O mesg(Id,withdraw(X,yes))  lt(X,Val) 
 is(NV,Val-X) 
 (ac-
tor(Id,NV)).
actor(Id, Val) O mesg(Id,withdraw(X,no)) le(X,Val) 
 actor(Id,Val).
To shut down ...
actor(Id, Val) O mesg(Id,terminate(Val)) 1.

Test ...
go (actor(ac1,0) O mesg(ac1,withdraw(20,R)) O mesg(ac1,deposit(30)) O

mesg(ac1,balance(B)) O mesg(ac1,terminate(X)))

 print(’Balance query: ’) 
 print(B) 
 nl

 print(’Withdraw successful: ’) 
 print(R) 
 nl

 print(’Final Balance: ’) 
 print(X) 
 nl 
 nl

 fail.

Figure 5.5 A Petri Net
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A transition is enabled if all places with incoming arcs have at least one token. An

enabled transition fires by removing a token from each place with an incoming arc and

placing a token on each place with an outgoing arc. In the Petri net above, the only en-

abled transition is from a to b and it fires by removing the token from a and placing a

token on b.

Davison [36] investigates modelling Petri nets in the guarded Horn clause language

Parlog ([50] and [125, chapter 3]). The Lygon realisation below is simpler and more con-

cise. In Lygon (program 21) the Petri net in figure 5.5 is encoded as:

t(a) t(b).
t(b) O t(d) t(c).
t(c) t(b) O t(d).

This states that (i) a token at place a can be transformed to a token at b, (ii) if there

are tokens at both b and c then they can be replaced with a token at d, and (iii) a token at

d can be replaced with two tokens at b and c.

Program 21 uses tick to single step the net – a transition cannot fire unless it is given

a tick. The control predicate is quite interesting and demonstrates an application of con-

text copying usingN. The predicate takes a single argument – a list, the length of which

determines how many steps are to be taken. The first clause of control terminates the

program (using >) if all transitions have been carried out. The second clause copies the

computation; the first copy is collected and printed, the second is given a tick token which

allows a single transition to take place. This technique allows a concurrent computation

to be controlled and terminated.

The query go generates the following output:

[t(a),t(d)]

[t(b),t(d)]

[t(c)]

[t(b),t(d)]

[t(c)]

[t(b),t(d)]
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Program 21 Petri Nets
tick O t(a) t(b).
tick O t(b) O t(d) t(c).
tick O t(c) t(b) O t(d).

go control([1,2,3,4,5,6]) O t(a) O t(c).

control([]) >.
control([AjAs]) (collect(X) 
 output(X)) N (tick O control(As)).

collect([t(X)jR]) O t(X) collect(R).
collect([]) 1.

We finish this section with a solution to the classical dining philosophers problem.

In this problem there are a number (usually five) of philosophers whose actions are as

follows:

1. Get a room ticket and then enter the dining room

2. Get the chopstick on one side

3. Get the chopstick on the other side

4. Eat

5. Return the chopsticks and room ticket

6. Return to thinking then repeat from step 1

A solution to the dining philosophers problem is a (concurrent) program which simulates

the actions of the hungry thinkers and implements a strategy which prevents (literal!)

starvation. Starvation can occur, for example, if all the philosophers simultaneously pick

up their right chopsticks and then wait for the left chopstick to become available.

This particular solution is adapted from [28]. For N philosophers there are N � 1

“room tickets”. Before entering the room each philosopher must take a roomticket from
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a shelf beside the door. This prevents all of the philosophers from being in the room at

the same time.

Program 22 combines a number of idioms which we have seen. The first clause of phil

uses a continuation passing style to sequence operations. The operations being sequenced

involve output (using print). A lock is used to obtain mutual exclusion, this prevents

output from different philosophers from being interleaved.

Program 22 uses a number of linear predicates: rm represents a roomticket, phil(X)

represents theXth philosopher and ch(X) theXth chopstick. tok is a token which enables

a single execution step to take place. By supplying a certain number of tokens we prevent

the computation from running indefinitely. lpr is a lock which is used to guarantee that

primitive actions (such as picking up a chopstick or eating) are mutually exclusive.

The main clause defining phil is simply the continuation passing encoding of the se-

quence:

1. Delete a token

2. Write “I’m hacking”

3. Delete a room ticket

4. Write “Entering room”

5. Delete one chopstick

6. Write “Grabbing chopstick”

7. Delete other chopstick

8. Write “Grabbing chopstick”

9. Write “Eating”

10. Write “Returning”

11. Add room ticket and both chopsticks

12. Goto step 1
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It is recommended that this program be run with fairness (see [146]) turned on. A

typical run produces the following output:

phil(a) hacking
phil(a) entering room
phil(c) hacking
phil(b) hacking
phil(d) hacking
phil(a) grabbing a
phil(c) entering room
phil(a) grabbing b
phil(b) entering room
phil(a) eat
phil(a) returning a and b
phil(c) grabbing c
phil(d) entering room
phil(c) grabbing d
phil(b) grabbing b
phil(c) eat
phil(c) returning c and d
phil(b) grabbing c
phil(b) eat
phil(d) grabbing d
phil(d) grabbing e
phil(b) returning b and c
phil(d) eat
phil(d) returning d and e
no tokens
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Program 22 Dining Philosophers
go 

phil(a) O neg chop(a) O neg room O
phil(b) O neg chop(b) O neg room O
phil(c) O neg chop(c) O neg room O
phil(d) O neg chop(d) O neg room O
phil(e) O neg chop(e) O
tokens. Added for termination purposes

tokens neg tok O neg tok O neg tok O neg tok O neg lpr.

phil(N) tok 
 hack(N, (room 
 enter(N,
(succmod(N,N1) 
 chop(N) 
 grab(N,N, (chop(N1) 
 grab(N,N1, (
eat(N, (return(N,N1, (neg chop(N) O neg chop(N1) O neg room O
phil(N))))))))))))).

phil(N) !(print(’no tokens’) 
 nl) 
 >.

succmod(a,b). succmod(b,c).
succmod(c,d). succmod(d,e).
succmod(e,a).

enter(N,C) lpr
 print(’phil(’)
 print(N)
 print(’) entering room’)
 nl

(neg lpr O call(C)).

eat(N,C) lpr 
 print(’phil(’) 
 print(N) 
 print(’) eat’) 
 nl 

(neg lpr O call(C)).

hack(N,C) lpr 
 print(’phil(’) 
 print(N) 
 print(’) hacking’) 
 nl 

(neg lpr O call(C)).

grab(N,N1,C) lpr 
 print(’phil(’) 
 print(N) 
 print(’) grabbing ’) 

print(N1) 
 nl 
 (neg lpr O call(C)).

return(N,N1,C) lpr 
 print(’phil(’) 
 print(N) 
 print(’) returning ’) 

print(N) 
 print(’ and ’) 
 print(N1) 
 nl 
 (neg lpr O call(C)).
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5.5 Artificial Intelligence

In this section we are concerned with the knowledge representation aspects of Artificial

Intelligence (AI). One of the many knowledge representation formalisms that has been

commonly used in AI is classical logic. Classical logic suffers from a number of inade-

quacies – chief among them is that change cannot be easily modelled. One aspect of this

is the frame problem – how to specify what remains unchanged by an operation. As we

shall see linear logic does not suffer from this problem – state change in linear logic is

simple and direct.

We present a range of examples illustrating the application of linear logic and of Ly-

gon to knowledge representation. It is worth noting that the problems we consider have

solutions in the classical logic framework. It is also worth emphasising that these solu-

tions are invariably complex and obtuse.

In [5] Vladimir Alexiev looks at Kowalski’s Event Calculus [90]. The event calculus

is a formalisation of events and their effect on states. One of the key features of the Event

Calculus is that it is executable – the theory is realised as a Prolog program. The Prolog

realisation of the Event Calculus relies heavily on negation as failure. This is inelegant

in that negation as failure is global – it deals with non-derivability. On the other hand the

notion of change is intuitively a local one. Linear logic allows a realisation of the Event

Calculus which is pure, direct and implements change as a local operation. In addition to

being simpler, being able to view change as a local operation is also considerably more

efficient.

In [145] a more detailed analysis is performed and a Lygon meta-interpreter con-

structed. The same conclusion – that linear logic is a much more natural (and efficient!)

framework for representing change – is reached.

We look at a number of examples:

1. The Yale shooting problem: a prototypical example of the frame problem.

2. Blocks world: an example planning problem.

3. Default reasoning.
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The Yale shooting problem [52] is a prototypical example of a problem involving

actions. The main technical challenge in the Yale shooting problem is to model the ap-

propriate changes of state, subject to certain constraints. In particular:

1. Loading a gun changes its state from unloaded to loaded;

2. Shooting a gun changes its state from loaded to unloaded;

3. Shooting a loaded gun at a turkey changes the turkey’s state from alive to dead.

To model this in Lygon, we have predicates alive, dead, loaded, and unloaded, rep-

resenting the given states, and predicates load and shoot, which, when executed, change

the appropriate states. The initial state is to assert alive and unloaded, as initially the

turkey is alive and the gun unloaded. The actions of loading and shooting are governed

by the following rules:

load unloaded 
 neg loaded.
shoot alive 
 loaded 
 (neg dead O neg unloaded).

Hence given the initial resources alive and unloaded, the goal shoot O load will cause

the state to change first to alive and loaded, as shoot cannot proceed unless loaded is true,

and then shoot changes the state to dead and unloaded, as required.

Expressing this problem in Lygon is simplicity itself (see program 23). It would be

trivial given certain syntactic sugar - see program 28. The query go prints out

[unloaded,dead].

An alternative way of presenting the first clause is shoot O (dead 
 unloaded) 

alive O loaded. This is slightly clearer but isn’t valid Lygon.

A (slightly) less artificial planning problem is the blocks world. The blocks world

consists of a number of blocks sitting either on a table or on other blocks and a robotic

arm capable of picking up and moving a single block at a time. We seek to model the

state of the world and of operations on it. Our presentation is based on [101–103]. This

program was independently written by Alessio Guglielmi [51].

The predicates used to model the world in program 24 are the following:

- empty: the robotic arm is empty;
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Program 23 Yale Shooting Problem
shoot alive 
 loaded 
 (neg dead O neg unloaded).
load unloaded 
 neg loaded.
start neg alive O neg unloaded.

go(X) collect([],X) O shoot O start O load.
go collects all solutions and displays them.
go go(X) 
 output(X) 
 fail.

collect(X,Y) get(Z) 
 collect([ZjX],Y).
collect(X,X).

get(X) once( (alive 
 eq(X,alive)) �
(dead 
 eq(X,dead)) �
(loaded 
 eq(X,loaded)) �
(unloaded 
 eq(X,unloaded))).

- hold(A): the robotic arm is holding block A;

- clear(A): block A does not support another block;

- ontable(A): block A is supported by the table;

- on(A,B): block A is supported by block B.

There are a number of operations that change the state of the world. We can take a

block. This transfers a block that does not support another block into the robotic arm. It

requires that the arm is empty. We can remove a block from the block beneath it, which

must be done before picking up the bottom block. We can also put a block down on the

table or stack it on another block. Finally, initial describes the initial state of the blocks.

The predicate showall allows us to collect the state of the blocks into a list which can

be displayed. The goal initial O go O show returns the solution R = [empty, on(a,b),

clear(a), clear(c), ontable(c), ontable(b)].

The order of the instructions take, put etc. is not significant: there are actions, speci-

fied by the rules, such as put(c), which cannot take place from the initial state, and others,
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such as take(b) which can. It is the problem of the implementation to find an appropriate

order in which to execute the instructions, so giving the final state.

Program 24 Blocks World
take(X) (empty 
 clear(X) 
 ontable(X)) 
 neg hold(X).
remove(X,Y) (empty 
 clear(X) 
 on(X,Y)) 
 (neg hold(X) O neg clear(Y)).
put(X) hold(X) 
 (neg empty O neg clear(X) O neg ontable(X)).
stack(X,Y) (hold(X) 
 clear(Y)) 
 (neg empty O neg clear(X) O neg on(X,Y)).

The initial state of the world ...
initial neg ontable(a) O neg ontable(b) O neg on(c,a) O neg clear(b) O neg clear(c)

O neg empty.

The actions to be done ...
go remove(c,a) O put(c) O take(a) O stack(a,b).

showall([ontable(X)jR]) ontable(X) 
 showall(R).
showall([clear(X)jR]) clear(X) 
 showall(R).
showall([on(X,Y)jR]) on(X,Y) 
 showall(R).
showall([hold(X)jR]) hold(X) 
 showall(R).
showall([emptyjR]) empty 
 showall(R).
showall([]).

show showall(R) 
 output(R). output is defined in program 1.

Our final artificial intelligence related example involves non-monotonic reasoning.

A logic is non-monotonic if the addition of a fact can cause old facts to become false.

Classical logic is monotonic and as a result, attempts at capturing non-monotonic rea-

soning in classical logic have been complicated. Girard [48] argues that linear logic is a

good candidate for capturing non-monotonic reasoning.

A common application for non-monotonic reasoning is reasoning about exceptional

situations and taxonomies. For example, as a rule, birds fly and chirp. We also know

that penguins are birds but that they do not fly. We seek to find a representation that al-

lows penguins to inherit the chirping behavior from birds while preventing them from

inheriting the ability to fly.
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In order to use linear logic as the reasoning mechanism we need to represent knowl-

edge as linear predicates. So we have the linear facts opus, tweety, bird, penguin, fly and

chirp. Our rules are of the form

class properties

For example, bird fly O chirp. Using resolution we can derive that a bird can fly and

chirp (using the query (neg fly 
 neg chirp) O bird).

Since we wish to be able to derive that birds can fly (that is, ignore their ability to

chirp where it is not relevant) we allow the derived attributes to be weakened by writing

bird (fly �?) O (chirp �?).

We can easily state that Opus has the property of penguin-hood (opus penguin –

note that since Opus only has a single property weakening is not necessary). The inter-

esting part is encoding the knowledge that penguins are non-flying birds. This is where

we exploit the non-monotonic properties of linear logic – birdO neg fly is provable but,

in general, birdO neg flyO p will not be. Thus we write penguin birdO antifly. The

choice of the formula antifly is important. We want flying behavior to be suppressed in

penguins but not chirping behavior. In order to achieve this antifly must be fly specific.

By having antifly consume an instance of fly the correct behavior occurs.

antifly neg fly
?

Girard refers to antifly as a “kamikaze” [48].
Below we have a derivation of Opus’ chirping behavior (on the left) and a failed at-

tempt to prove that he can fly (on the right).

fly; neg fly
fly �?; neg fly

chirp; neg chirp

chirp�?; neg chirp

?; chirp�?; neg chirp

fly �?; chirp�?; neg fly 
?; neg chirp



(fly �?)O (chirp�?); neg fly 
?; neg chirp

bird; neg fly 
?; neg chirp

birdO (neg fly 
?); neg chirp

penguin; neg chirp
opus; neg chirp

fly; neg fly
fly �?; neg fly

chirp; neg fly

chirp�?; neg fly

?; chirp�?; neg fly

fly �?; chirp�?; neg fly 
?; neg fly



(fly �?)O (chirp�?); neg fly 
?; neg fly

bird; neg fly 
?; neg fly

birdO (neg fly 
?); neg fly

penguin; neg fly
opus; neg fly
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Under program 25 we have that the goals implies(tweety,chirp), implies(tweety,fly)

and implies(opus,chirp) are derivable but that implies(opus,fly) is not.

Program 25 Exceptional Reasoning
Penguins are birds which don’t fly ...
penguin bird O (neg fly 
 ?).
Birds fly and chirp ...
bird (fly � ?) O (chirp � ?).
Tweety is a bird
tweety bird.
Opus is a penguin
opus penguin.

implies(A,B) call(neg B) O call(A).
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5.6 Meta-Programming

A meta-interpreter is an interpreter for a language L which is itself written in L. For ex-

ample, a LISP interpreter written in LISP. The usefulness of meta-interpreters as distinct

from any other type of interpreter is that in a dynamic language such as Prolog or LISP

it is generally possible to delegate aspects of the implementation. For example, the stan-

dard Prolog meta-interpreter does not implement unification. This enables aspects of the

implementation that are not interesting to be implemented with a minimum of effort.

Meta interpreters have a range of uses. One important area of application is prototyp-

ing – the use of meta-interpreters often allows for a quick implementation of a language

which is similar to the base language. This allows experimentation with a language im-

plementation while its design is still being developed. A number of languages began their

lives as meta-interpreters including Concurrent Prolog [125, chapter 2], Erlang and of

course, Lygon. A second area of application involves non standard executions. Typical

examples are collecting statistics, tracing and debugging. Meta-interpreters are also used

in certain areas of Artificial Intelligence.

Meta-interpreters are a part of the Prolog culture [117, 134]. The standard “vanilla”

Prolog meta-interpreter handles the resolution mechanism and expresses the essence of

Prolog execution in three lines:

prove(true) :- true.

prove((A,B)) :- prove(A), prove(B).

prove(A) :- clause(A,B), prove(B).

The structure of this program is typical of a meta-interpreter for a logic programming lan-

guage. To prove a logical constant we simply check that the constant holds. In classical

logic false will always fail and true will always succeed. However, in linear logic some

logical constants will either succeed or fail depending on the context. The Prolog clause

prove(true) :- true.

corresponds to the Lygon clauses:

prove(?) ?.
prove(1) 1.
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prove(>) >.

To prove a formula which consists of a connective with some sub-formulae we prove

the sub-formulae and join the proofs with the appropriate connectives. The Prolog clause

prove((A,B)) :- prove(A), prove(B).

corresponds to the Lygon clauses:

prove(A 
 B) prove(A) 
 prove(B).
prove(A N B) prove(A) N prove(B).
prove(A O B) prove(A) O prove(B).
prove(A � B) prove(A) � prove(B).
prove(exists(X,A)) exists(X,prove(A)).
prove(! A) ! prove(A).

The final Prolog clause handles atomic goals by resolving against a program clause.

The Lygon equivalent is a little more complex since Lygon program clauses have a richer

structure (see program 26).

There are a number of aspects of a Lygon meta-interpreter which do not arise in Pro-

log meta-interpreters:

1. The representation of the context,

2. Resolving against clauses, and

3. Selecting the formula to be reduced.

Note that the last of these is specific to Lygon and does not appear in the Lolli meta-

interpreter [30].

We choose to represent a linear formula F as lin(F) and a non-linear formula ?F as

? nonlin(F). This allows us to distinguish between linear and non-linear formula and

means that, for instance, the connective ! works as is, since the representation of linear

and non-linear formulae are linear and non-linear formulae respectively.

Resolution is slightly more complex than is the case for Prolog but the principle is still

straightforward. An atomic goal (atom(A)) is provable if either (i) the context contains
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the linear negation (lin(neg A)), (ii) A is a builtin predicate, or (iii) the program contains

a clause R and resolving eliminates A.

The first and second cases are both handled easily by a single clause each. The third

case uses the auxiliary predicate doleft which implements the relevant left rules.
The following derivation illustrates the use of doleft:

prove(atom(append([1],[2],An))) 
 print(An)
�! nonlin(R) 
 doleft(R,atom(append([1],[2],An)))
 print(An)
R = (atom(append([XjY],Z,[XjQ])) atom(append(Y,Z,Q)))
�! doleft((atom(append([XjY],Z,[XjQ])) atom(append(Y,Z,Q))) , atom(append([1],[2],An)))

 print(An)

X = 1 , Y = [] , Z = [2] , An = [1jQ]
�! prove(atom(append([],[2],Q))) 
 print([1jQ])
�! nonlin(R) 
 doleft(R,atom(append([],[2],Q)))
 print([1jQ])
R = atom(append([],X,X))
�! doleft(atom(append([],X,X)) , atom(append([],[2],Q)))
 print([1jQ])
X = [2] , Q = [2]
�! print([1,2])

One operation that is specific to Lygon is selecting a formula to be reduced. As we

have seen there are a number of heuristics which can be applied to reduce the amount

of nondeterminism. Our first meta-interpreter (program 26) side-steps the issue by dele-

gating formula selection to the underlying Lygon implementation. For example, the goal

prove((A 
 B) O (C N D)) is reduced to prove(A) 
 prove(B) , prove(C) N prove(D) at

which point the Lygon system will select the second formula for reduction and commit

to this selection.

The second meta-interpreter (program 27) illustrates how selecting the formula to be

reduced can be done by the meta-interpreter. We select a formula by looking at what

classes of formulae are present. If there are any “async” formulae then we can select an

arbitrary “async” formula and commit to it. If all formulae are “sync” then we must select

a formula non-deterministically. Note that most of the clauses defining binary connec-

tives are modified to use select. By writing prove(A O B) neg lin(A) O neg lin(B)

O select rather than prove(A O B) prove(A) O prove(B) we ensure that sub-formulae

can only run when they have been selected.

The select operation copies the linear context (using N). The copy is consumed and
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a note is made of which classes of formulae are present. The predicate get then selects a

formula from the appropriate class. This formula is then passed to prove.

For example, the goal5 prove( (p � q) O (neg p N neg q)) reduces to the goal

neg lin(p � q) , neg lin(neg p N neg q) , select. The linear context is copied and

type(sync,T) is called. This goal consumes the two lin facts and determines that the first

is synchronous and the second asynchronous. The goal returns the result T = async since

asynchronous goals take precedence over synchronous goals.

The predicate get(async,A) is then called. This selects an arbitrary asynchronous goal

formula and commits to the selection. The result (A = neg pN neg q) is then passed to

prove.

One of the applications of meta-interpreters is to enable easy experimentation with

language variants and extensions. One language extension to Lygon which has been pro-

posed [154] is rules. A rule of the form rule(N,Is)Os) is read as stating that in order to

prove N we must consume Is and produce Os. Alternatively, the rule rewrites the mul-

tiset containing N and Is to the multiset containing Os. The atom N is distinguished in

that it triggers the rule application. As program 28 demonstrates, extending the Lygon

meta-interpreter with rules is quite simple.
We have the following derivation:

init , shoot , load
�! unloaded, alive, shoot, load Using the rule for init
�! loaded, alive, shoot Using the rule for load
�! unloaded, dead Using the rule for shoot

5Note that the notation here omits occurrences of atom( : : : ) to increase readability.
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Program 26 Lygon Meta Interpreter I
prove(A 
 B) prove(A) 
 prove(B).
prove(A O B) prove(A) O prove(B).
prove(A � B) prove(A) � prove(B).
prove(A N B) prove(A) N prove(B).
prove(?) ?.
prove(1) 1.
prove(>) >.
prove(exists(X,B)) exists(X,prove(B)).
prove(?(neg(F))) ? neg nonlin(F).
prove(!(F)) ! prove(F).
prove(once(F)) once(prove(F)).
prove(atom(A)) nonlin(R) 
 doleft(R,A). Resolve against a clause.
prove(atom(A)) lin(neg(A)).
prove(atom(A)) builtin(A) 
 call(A).
prove(neg(A)) neg lin(neg(A)).

doleft(atom(A),A).
doleft(forall(X,B),A) exists(X,doleft(B,A)).
doleft((atom(A) G),A) prove(G).
A simple Read-Eval-Print loop. Use EOF to exit.
shell repeat 
 print(’Meta1 ’) 
 readgoal(X) 
 print(X) 


once(
(eq(X,atom(end of file)) 
 nl)
� (prove(X) 
 output(yes))
� output(no))

 eq(X,atom(end of file)).

The program clauses usable from the meta-shell:
(Note that for now we need to manually add the atom wrapper)

nonlin(atom(eq(X,X))).
nonlin(atom(append([],X,X))).
nonlin((atom(append([XjY],Z,[XjQ])) atom(append(Y,Z,Q)))).
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Program 27 Lygon Meta Interpreter II
prove(A 
 B) prove(A) 
 prove(B).
prove(A O B) neg lin(A) O neg lin(B) O select.
prove(A � B) (neg lin(A) � neg lin(B)) O select.
prove(A N B) (neg lin(A) N neg lin(B)) O select.
prove(?) ?. prove(1) 1. prove(>) >.
prove(exists(X,B)) exists(X,neg lin(B)) O select.
prove(?(neg(F))) ? neg nonlin(F).
prove(!(F)) ! prove(F).
prove(once(F)) once(prove(F)).
prove(atom(A)) nonlin(R) 
 doleft(R,A).
prove(atom(A)) lin(neg(A)).
prove(atom(A)) builtin(A) 
 call(A).
prove(neg(A)) neg lin(neg(A)).

doleft(atom(A),A).
doleft(forall(X,B),A) exists(X,doleft(B,A)).
doleft((atom(A) G),A) neg lin(G) O select.

select type(T) N (get(T,A) 
 prove(A)).
type(T) type(sync,T).

type(C,T) once(lin(A)) 
 atomtype(A,D)
 lub(C,D,E) 
 type(E,T).
type(T,T).

get(async,A) once(lin(A) 
 atomtype(A,async)).
get(sync,A) lin(A) 
 atomtype(A,sync).

atomtype(
( , ),sync). atomtype(�( , ),sync).
atomtype(exists( , ),sync). atomtype(1,sync).
atomtype(!( ),sync). atomtype(once( ),sync).
atomtype(atom( ),sync). atomtype(neg( ),sync).
atomtype(O( , ),async). atomtype(N( , ),async).
atomtype(>,async). atomtype(?,async).
atomtype(?( ),async).

lub(sync,X,X). lub(async,async,async). lub(async,sync,async).

shell repeat 
 print(’Meta2 ’) 
 readgoal(X) 

once(

(eq(X,atom(end of file)) 
 nl) � (prove(X) 
 output(yes)) � output(no))

 eq(X,atom(end of file)).
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Program 28 Adding Rules to the Meta Interpreter
prove(atom(A)) rule(A,In) Out) 
 dorule(In,Out).

dorule([],[A,BjAs]) (neg lin(neg(A))) O dorule([],[BjAs]).
dorule([],[A]) (neg lin(neg(A))).
dorule([AjAs],X) lin(neg(A)) 
 dorule(As,X).

We encode the Yale shooting problem (see program 23) using the rules:

rule(shoot, [alive,loaded]) [dead,unloaded]).
rule(load, [unloaded]) [loaded]).
rule(init, []) [unloaded, alive]).
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5.7 Other Programs

This section contains a number of other examples that did not fit into a previous category.

These programs have potential for future work on programming idioms in Lygon.

An exception is a programming language construct used to handle error situations

without having error handling code sprinkled throughout the program. Exceptions are

used in a range of languages including SML, Ada, Java and ISO Prolog. Exceptions are

manipulated using the two primitives catch and throw. The catch construct refers to two

blocks of code. The first is executed. If an exception is thrown (using “throw”) within

this block (and is not caught by an enclosed catch block) then execution continues in the

second block (which is indicated by the keyword “handle” in the following code). If no

exception is generated then the second block is ignored. For example, in the following

code, Hello is printed and an exception is thrown. The exception is caught by the inner

catch and World is printed. Since the exception was caught, it is not propagated to the

outer catch and its second block is ignored.

catch anException in

catch anException in

print(Hello);

throw anException;

print(There);

and handle it by doing

print(World);

end

and handle it by doing

print(Exception Raised);

print(Aborting);

end

Program 29 describes a form of exception handling in Lygon. The method relies on

the use of > to consume and thus abort the rest of the computation.

The first clause states that if the goal raise(Y) is ever present then we can use the

axiom rule, unifying X and Y and then pass the rest of the linear environment (including
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the rest of the computation) to > for consumption. The ! around the handler forces the

computation to be consumed by the>. In the case that no exception is raised we need to

allow catch to be ignored which is done by the second clause.

The goal go1 has a single solution which prints handle: 3. The goal go2 has a

single solution which prints Result: 3.

Program 29 Exceptions
catch O raise(X) > 
 (!handler(X)).
catch ?.

handler(X) !(print(’handle: ’) 
 output(X)).
result(X) !(print(’Result: ’) 
 output(X)).

go1 catch O compute1.
go2 catch O compute2.

compute1 is(X,1+2) 
 (raise(X) O result(X)).
compute2 is(X,1+2) 
 result(X).

We move now to an application of Lygon to parsing. In [35] constraint multiset gram-

mars are used to parse visual programming languages. Since the linear context is just a

multiset this fits in quite nicely with Lygon and suggests that a Lygon implementation of

a parser for constraint multiset grammars ought to be straightforward.

The idea behind multiset grammars is that basic pictorial elements such as circles,

lines and text are terminals in a multiset. Grammar rules operate on multisets of symbols

rather than on sequences of symbols. This makes sense since a picture does not have the

natural notion of a sequence of symbols that is present in a string.

For example given the multiset f dot(p(30,70)), line(p(10,20), p(30,70)), text(p(10,20),

”Some Text”) g the following rule, which states that an arrow is a line which ends at the

position of a dot arrow(S,E) line(S,E) 
 dot(P) 
 close(P,E) can be used to yield the

multiset f text(p(10,20),”Some Text”), arrow(p(10,20),p(30,70)) g containing a termi-

nal and a nonterminal. The predicate close takes two locations (of the form p(x,y) and

succeeds if they are within � of each other.

The example below parses finite state machines. The grammar contains four termi-



214 CHAPTER 5. APPLICATIONS OF LYGON

nals symbols:

1. dot(Posn) which indicates the pointing end of an arrow.

2. line(Start,End,Middle)

3. text(Posn,Text)

4. circle(Posn,Radius)

Figure 5.6 Finite State Machine
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Figure 5.6 can be represented as

figure 
neg circle(p(20,10),10)O neg circle(p(50,40),10)O neg circle(p(90,10),10)O
neg circle(p(90,10),7) O neg line(p(10,0),p(10,10),p(10,5)) O

neg line(p(20,20),p(40,40),p(30,30))O neg line(p(70,10),p(30,10),p(50,10))O
neg line(p(60,40),p(90,30),p(75,30))O neg dot(p(10,10)) O
neg dot(p(70,10)) O neg dot(p(40,40)) O neg dot(p(90,30)) O
neg text(p(20,10),1) O neg text(p(90,10),2) O neg text(p(50,40),3) O
neg text(p(30,30),b) O neg text(p(50,10),a) O neg text(p(75,30),c).

The grammar also defines a number of non-terminals which we represent using rules

which consume the required terminals.

� An arrow is formed from a line and a dot at the arrow’s end. Arrows have a start,

an end and a middle – arrow(Start,End,Middle).

� An arc is a labelled arrow. It has a start, an end, a middle and some text

arc(Start,End,Middle,Text).
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� A startarc is an arrow which does not have an attached label. It indicates the initial

state and has only an end.

� There are three types of states, all have a middle, a radius, a label and a tag identi-

fying their type – state(Middle,Radius,Label,Type). All include a circle and some

text.

– A final state consists of two nested circles and a label.

– A start state is a state which is the target of a startarc.

– A state which is not one of the above is normal.

� A trans(ition) is an arc between two states. The rule given in [35] is awkward in

Lygon since it makes use of non-consuming sub-derivations. The basic problem

is that a transition needs to be able to reference its source and destination states;

however there can be more than one transition to or from a given state. We solve

this problem by parsing in two stages – in the first stage the states are derived and

a note of the states derived is made in the non-linear predicates statem. In the sec-

ond phase the transitions between the states are parsed. The predicate statem im-

plements a form of memoing.

The program operates by starting off with a multiset containing terminal atoms. It

then applies rules which combine these primitive picture elements into higher level ele-

ments such as arcs and transitions.

Note the use of negation as failure. The not predicate is defined in the Lygon standard

library (program 1). The semantics of negation as failure mirrors Prolog – the goal not(G)

succeeds if call(G) fails and fails if call(G) succeeds.

The goal figure O go(X,Y) has the single solution

X = [state(p(50,40),10,3,normal), state(p(20,10),10,1,start), state(p(90,10),20,2,final)]

Y = [trans(3,2,c), trans(1,3,b), trans(1,2,a)].

Another Lygon application is the Hamming sequence. This program illustrates how

lazy streams can be represented in Lygon. The Hamming sequence consists of numbers

of the form 2i3j5k in ascending order. A simple algorithm for generating these numbers

uses streams (see figure 5.7). We seed the input with 1. We can generate further numbers
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Program 30 Parsing Visual Grammars
arrow(S,E,M) (line(S,E,M) � line(E,S,M)) 
 dot(P) 
 close(P,E).
arc(S,E,M,T) arrow(S,E,M) 
 text(P,T) 
 close(P,M).
startarc(P) arrow(S,P,M) 
 not(text(M1, ) 
 close(M1,M)).

state(M,R1,N,final) circle(M1,R1) 
 circle(M2,R2) 

close(M1,M2) 
 lt(R2,R1) 
 text(M,N) 
 close(M,M1).

state(M,R,N,start) startarc(E) 
 circle(M,R) 
 oncircle(E,M,R) 

text(P,N) 
 close(P,M) 
 not(circle(M, )).

state(M,R,N,normal) circle(M,R) 
 text(P,N) 
 close(P,M) 

not(circle(M, )) 
 not(startarc(P2) 
 oncircle(P2,M,R)).

trans(S,E,L) arc(Sa,Ea,Ma,L) 

((statem(M1,R1,S, ) 
 >) N
(statem(M2,R2,E, ) 
 not(eq(M1,M2)) 
 >) N
(oncircle(Sa,M1,R1) 
 oncircle(Ea,M2,R2) 
 >)).

states([]) not(state( , , , )).
states([state(A,B,C,D)jX]) once(state(A,B,C,D)) 
 states(X).

transitions([]) not(trans( , , )).
transitions([trans(A,B,C)jX]) once(trans(A,B,C)) 
 transitions(X).

go(States,Transitions)
go(X,Y) states(X) 
 (put(X) O transitions(Y)).

put([]) ?.
put([state(A,B,C,D)jXs]) (? neg statem(A,B,C,D)) O put(Xs).

oncircle(P1,P2,R) distance(P1,P2,R1) 
 closev(R,R1).
close(A,B) distance(A,B,X) 
 eps(Epsilon) 
 lt(X,Epsilon).
closev(A,B) is(D,A-B) 
 sqr(D,E) 
 eps(Eps) 
 lt(E,Eps).
eps(1.0).
distance(p(X1,Y1),p(X2,Y2),R) is(Dx,X1-X2) 
 is(Dy,Y1-Y2) 


sqr(Dx,Dxs) 
 sqr(Dy,Dys) 
 is(S,Dxs+Dys) 
 sqrt(S,R).
sqrt(X,Y) is(Y,pow(X,0.5)).
sqr(X,Y) is(Y,pow(X,2.0)).
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in the sequence by multiplying existing numbers by 2, 3 or 5. Each number generated is

both output and fed back into the process to get further numbers.

In program 31 we represent a stream as a collection of linear facts. The times predi-

cate multiplies its arguments. If the result is greater than the limit then it is ignored other-

wise it is cycled back into in and copied to show. Once the sequence has been generated

up to a given limit we collect and display the results. The query go(30) prints

[2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27]

Figure 5.7 Diagram of Hamming Processes

in show
x 2
x 3
x 5

Our final example involves bottom up computation. Logic programming languages

such as Prolog and Lygon are top down – given a clause such as p q ^ r and a query

p they attempt to show that p holds by showing that q ^ r holds.

The complementary approach – used in deductive databases – is bottom up. Here we

begin with the knowledge that q and r hold and we then conclude from the rule that p

must hold. Since bottom up computation is not goal directed, generalising it to linear

logic is an open area of research [61].

Program 32 illustrates how we can emulate simple bottom up processing in Lygon.

We have a collection of facts which are known to hold and we apply rules “backwards”

to derive new facts. To avoid inefficiency we tag each fact with its “generation number”

– initial facts are tagged with 0 and a fact derived from facts tagged n and m is tagged

with max(m;n) + 1.

The predicate do has an argument which indicates the current generation being pro-

cessed. To avoid re-generating facts, one of the facts being used must be from this gen-

eration. For example, if we are processing generation 2 then we can use a fact from gen-

eration 2 and one from generation 1 to generate a new fact which will be of generation

3.
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Program 31 Hamming Sequence Generator
go(Lim) go(Lim,X)
 nodupsort(X,X2) 
 output(X2).
go(Lim,L) in(1,Lim) O collect(L).

in(X,Lim) times(2,X,Lim)O times(3,X,Lim)O times(5,X,Lim).

times(X,Y,Lim) is(Z, X * Y) 

((lt(Z,Lim) 
 (in(Z,Lim) O neg show(Z))) �
(ge(Z,Lim) 
 ?)).

Collects all shows into list ...
collect([ZjX]) once(show(Z)) 
 collect(X).
collect([]).

nodupsort([],[]).
nodupsort([X],[X]).
nodupsort([X,YjXs],R) halve([X,YjXs],A,B)


 nodupsort(A,R1) 
 nodupsort(B,R2) 
 merge(R1,R2,R).

merge([],X,X).
merge([XjXs],[],[XjXs]).
merge([XjXs],[YjYs],[XjR]) lt(X,Y) 
 merge(Xs,[YjYs],R).
merge([XjXs],[YjYs],[YjR]) gt(X,Y) 
 merge([XjXs],Ys,R).
merge([XjXs],[YjYs],R) eq(X,Y) 
 merge([XjXs],Ys,R).

The particular application is path finding. The predicate canadd finds an edge in the

current generation and another edge and checks that the new composite edge derived is

not present in a previous generation. Note the use of N to avoid consuming the edges

being checked.

The clauses for do simply find a new edge using canadd and add it. If no more edges

can be added in the current generation then the generation is incremented and checkdo

is called. The predicate checkdo calls do if edges were added to the previous generation

and terminates otherwise.

Consider running the goal go(X). The graph described is that of figure 5.2. In the first

generation we add composite edges from a to c, b to d, c to e, c to a and d to b.
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The second generation adds composite edges from a to d, b to a, b to c, c to b and d

to c using an initial edge and a first generation edge and adds composite edges from a to

e, a to a, b to b, c to c and d to d using pairs of first generation edges. No more composite

edges can be derived and so the goal returns the answer:

X = [e(d,e,0), e(d,a,0), e(c,d,0), e(b,c,0), e(a,b,0), e(a,c,1), e(b,d,1), e(c,a,1), e(c,e,1),

e(d,b,1), e(d,d,2), e(d,c,2), e(c,c,2), e(c,b,2), e(b,b,2), e(b,a,2), e(b,e,2), e(a,e,2), e(a,a,2),

e(a,d,2)]

Program 32 Bottom Up Computation
go(X) graph O neg result(X) O do(0).

graph 
neg edge(a,b,0)O neg edge(b,c,0)O neg edge(c,d,0)O neg edge(d,a,0)O neg edge(d,e,0).

canadd(N,A,C,NR) (edge(A,B,N)
 edge(B,C,N1)
 le(N1,N)
 is(NR,N+1)
>)N
(not(edge(A,C, ) 
 >) 
 >).

do(N) canadd(N,A,B,NR) N (neg edge(A,B,NR) O do(N)).
do(N) not(canadd( , , )) 
 is(N1,N+1) 
 checkdo(N1).

checkdo(N) edge(A,B,N) 
 (neg edge(A,B,N) O do(N)).
checkdo(N) not(edge(A,B,N)) 
 collect([]).

collect(X) once(edge(A,B,N)) 
 collect([e(A,B,N)jX]).
collect(X) result(X).
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5.8 Discussion

In this chapter we have presented a range of applications of Lygon. These illustrate that

the linear logic aspects of the language do indeed gain significant additional expressive-

ness. Many of the programs could also be written in another linear logic programming

language (see section 6.1). However only Lygon and Forum are capable of expressing

all of the examples presented.

In the process of developing the programs we have noted a number of idioms that

occur frequently in Lygon programs. These programming patterns form the beginnings

of a programming methodology for linear logic programming languages. An example is

the use of > to simulate an affine mode where certain resources can be ignored but not

duplicated.

A number of the common programming idioms have a clumsy syntax; perhaps the

most glaring example is the use of a continuation passing style to enforce a certain se-

quence of operations. One area for further work is the use of syntactic sugar to make

common idioms less syntactically clumsy. Rules (see program 28 and [154]) are an ex-

ample of syntactic sugar.

Another area for further work concerns type systems. Type systems for logic pro-

gramming languages [121] describe the usage of terms. In linear logic programming

languages it makes sense to also consider a form of typing which operates at the level

of predicates. That is, rather than describe the possible structure of the arguments to a

predicate, the type system would describe the possible effects of the predicate on the lin-

ear context. If, for example, we know which linear predicates are added and removed by

each predicate then it is possible to detect at compile time that a goal can not consume a

certain linear predicate. This notion of predicate-level typing is similar to the results of

the analysis presented in [12] and to the type system of [87].



221

Chapter 6

Comparison to Other Work

In this chapter we survey and compare the variety of logic programming languages which

are based on linear logic. We also briefly relate our work to other uses being made of

linear logic in the programming language research community. In particular, we look at

functional programming languages based on linear language and at uniqueness types.

Uniqueness types apply the concept of linearity to values in a (usually declarative)

programming language. Uniqueness types exist in Clean [19–21, 130], Mercury [64, 132,

133] and in a version of Lisp developed by Henry Baker [13–16].

Uniqueness types are inspired by linear logic but in general they make use of a very

limited subset of the logic. The two main uses of uniqueness types are to guarantee single

threading of side effecting I/O operations and to ensure single threading of data structures

— in particular arrays — to ensure that in place updating can be done safely. This second

application can be seen as a garbage collection issue [33, 143].

A related application of linear logic is its use to derive functional programming lan-

guages. This is done using the Curry-Howard isomorphism which states that there is

an equivalence between theorems and types in the �-calculus. This has been applied by

Mackie [98, 99], Abramsky [1], Lafont [91, 92] and Lafont and Girard [49] to derive a

linear version of the �-calculus. The resulting languages are rather different to logic pro-

gramming languages. Formally, the execution model in functional programming is based

on the reduction of proofs through cut elimination whereas in logic programming the ex-

ecution model is based on proof search. More intuitively, in a functional programming
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language based on linear logic, linearity is applied to values - linearity thus limits what

the programmer can write. In a logic programming language based on linear logic lin-

earity is applied to predicates and gives the programmer more ways of doing things.

The application of linear logic to values is orthogonal to its application to predicates

– it is quite possible to visualise a variant of, say, Lygon which restricts values to being

used linearly and thus avoids the need for a garbage collector.

6.1 Linear Logic Programming Languages

In recent years a number of logic programming languages based on linear logic have been

proposed. These tend to fall into two classes based on how they use linear logic:

1. Languages which extend Prolog with linear logic features, and

2. Concurrent languages.

Some languages – for instance Lygon and Forum – both extend Prolog and use linear

logic to add concurrency. In general, the concurrent languages tend to have ad hoc de-

signs and allow a fairly limited class of formulae. Languages in this class are LO, ACL

and LC.

The first class of languages tend to have been designed using a proof theoretical anal-

ysis. These languages generally allow a rich class of linear logic formulae to be used.

Languages which fall into this group are Lolli, Lygon2 and Forum.

As we shall see, Lygon2 is a superset of most other linear logic based logic program-

ming languages. The exception is Forum which seems to be roughly equivalent to Lygon

(as proposed in [122]) and as a result is harder to implement than Lygon2 .

A survey of the languages can be found in [110]. The syntax of the various languages

are summarised in figure 6.1. Note when comparing Lygon2 to Forum and Lolli that the

Lygon2 set of program clauses is the normal form of the larger set:

D ::= !Dn j Dl

Dn ::= A j Dn ODn j Dn NDn j 8Dn j G ( Dn
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Dl ::= > j A j Dl ODl j Dl NDl j 8xDl j G ( Dl

The same normal form can also be applied to Forum and Lolli.

LO and LinLog

LO (Linear Objects) [8–10] is one of the earlier languages proposed. The motivation

behind its design is to take the object oriented programming paradigm as realised in first

generation concurrent logic programming languages (see section 6.2) and realise it in a

concurrent language based on linear logic. LO’s design extends the ideas of committed

clause logic programming languages with multi-headed clauses (i.e., clauses of the form

!(G( (A1O: : :OAn))). However the class of goal formulae permitted is fairly limited.

LO has been implemented but the implementation is not publicly available.

A novel mechanism introduced in the language is a broadcast marker. Some of the

formulae in the head of a clause can be marked for broadcast. These formulae are not

removed from the relevant context but added to the initial context. The initial query is

seen as containing an unknown region which is determined as broadcasts are processed.

More recent work with LO involves optimising communication by abstract interpre-

tation [11, 12] and the use of the language as a co-ordination language [29]. In [42] LO is

used to co-ordinate a distributed diary system whose components were written in Prolog.

With the exception of the broadcast mechanism the language is a subset of a number

of other languages including ACL, Forum and Lygon.

A related language to LO is LinLog. LinLog has not, to the best of my knowledge,

been implemented. It is similar to Forum in that it is “complete for the whole of linear

logic”. In other words, there exists a translation algorithm which can encode an arbitrary

linear logic proof into a proof that consists of LinLog goals and programs.

An interesting property of LinLog is that selecting a goal formula needs to be done

using “don’t know” nondeterminism but once a goal formula is selected it can be com-

pletely reduced to atoms before another goal needs to be considered. This property is

achieved by requiring LinLog goals to consist of synchronous connectives outside asyn-

chronous connectives. For example, the formula pO (q 
 r) is not a valid LinLog goal

since the O (asynchronous) occurs outside of a synchronous connective (
).
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Figure 6.1 Linear Logic Based Logic Programming Languages
LO [10]:

D ::= !8x(G ( A1 O : : :OAn) G ::= A j > j G N G j G O G

LinLog [6]:
D ::= !8x(G ( A1 O : : : OAn)

G ::= H j!H j 1 j G 
 G j 0 j G � G j 9xG

H ::= A j?A j ? j HOH j > j HNH j 8xH

ACL [85]:
D ::= !8x(G ( Ap)

G ::= ? j > j Am j?Am j Ap j G O G j G N G j 8xG j R

R ::= 9x(A?

m 
 : : : 
A?

m 
 G) j R �R

LC [140]:

D ::= !8x(G ( A1 O : : : OAn) G ::= A j 1�? j > j G O G j G � G j 9xG

Lolli [70]:
D ::= > j A j D ND j G( D j G ) D j 8x:D

G ::= > j A j G N G j D( G j D ) G j 8x:G j G � G j 1 j G 
 G j!G j 9xG

Forum [106]:

D ::= G G ::= A j G O G j G N G j G ( G j G ) G j > j ? j 8xG

Lygon2 (Section 3.11)
D ::= (C1 N : : : N Cn) j !C

C ::= 8x(G ( (A1 O : : :OAn))

G ::= A j 1 j ? j > j G 
 G j G � G j G O G j G N G j D( G j D? j 8xG j 9xG j!G j?G
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The class of formulae allowed in LinLog is a subset of the Lygon2 class of formulae.

Since there exists an algorithm [6] which can translate an arbitrary proof in linear

logic to one in the LinLog fragment, it follows that any proof in linear logic can be car-

ried out within Lygon2 via a syntactic translation. This result is not actually of much

practical use – although a proof will exist in the Lygon2 fragment of linear logic we can

not necessarily expect the Lygon system to be able to find it efficiently.

ACL

ACL [85, 88] (A Concurrent Language) uses linear logic as the basis for a concurrent pro-

gramming languages. The actual language1 [128] is an ML-like functional programming

language with concurrency primitives inspired by linear logic’s connectives.

Some early work with ACL looked at process equivalence relations [86]. More recent

work centers around the development of language tools such partial evaluators [73] and

abstract interpreters [84].

ACL has also been used as an implementation language for a concurrent object-oriented

programming language and in this context there has been work on providing a type sys-

tem for the language which is capable of detecting “message not understood” errors at

compile time [87].

Like LO, ACL sacrifices completeness by implementing “don’t care” nondetermin-

ism. The class of formulae used in ACL is a subset of the Lygon2 class of formulae.

LC

LC (Linear Chemistry) [140] is a minimal concurrent language fairly similar in capabili-

ties to ACL. It is interesting for a number of reasons. Firstly, it was systematically derived

using a generalisation of uniformity. Secondly, it makes use of the formula 1 � ? as a

primitive which terminates a single process – if there are other processes then the pro-

cess quietly vanishes (using ?) otherwise the proof is successful (using 1). Finally, an

interesting property of the language is that all proofs in the LC fragment of linear logic

are actually sticks rather than trees – each inference rule has at most one premise.

1Available from camille.is.s.u-tokyo.ac.jp:pub/hacl.
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LC has, to the best of my knowledge, not been implemented. The class of formulae

allowed in LC is a subset of the Lygon2 class. Since LC (like ACL and LO) sacrifices

completeness by implementing “don’t care” nondeterminism, it is incapable of express-

ing programs involving backtracking such as the graph search programs of section 5.3.

Lolli

Lolli [66, 69, 70] (named for the lollipop connective of linear logic (()) was the first

linear logic based logic programming language to be designed using uniformity. Apart

from being based on intuitionistic linear logic and thus not allowingO (which is needed

for the concurrent applications of linear logic) Lolli is a rich language, particularly in its

class of program formulae. The Lolli implementation [68] is available from its World

Wide Web page [67]. Note that F ) G is defined as (!F )( G, this is also the case for

Forum.

The language has been used for a number of example programs [66] which demon-

strate basic techniques of linear logic programming (for example, permutations, toggling

etc.). It has also been used to specify filler-gap dependency parsers [65]. Lolli has been

used to implement event calculus programs by a number of researchers [5, 31].

Lolli and Lygon are fairly similar in methodology. Roughly speaking, Lolli can be

seen as Lygon minus concurrency. Indeed, the class of formulae usable in Lygon2 is a

superset of the Lolli class.

Forum

In some aspects Forum [106, 109] is fairly similar to Lygon. The main difference is that

Forum satisfies a variant of asynchronous uniformity which does not require that atomic

goals guide the proof search process. Forum includes? in programs and in clause heads

and as a result it is more of a specification language than a logic programming language.

Both of Forum’s designers have commented [71, 111] that Forum does not appear to be

a logic programming language. Two of the reasons why Forum is too expressive to be

considered a logic programming language involve higher order quantification. The third

is the presence of program clauses of the form G ( ?. Such clauses can be resolved
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against at any time regardless of the goal.

Forum has a naı̈ve implementation in �-Prolog and an SML implementation (similar

in style to Lolli’s implementation) which is available from

ftp://ftp.cs.hmc.edu/pub/hodas/Forum/forum.tar.Z.

Work on Forum has mostly concentrated on its use as a specification language. It has

been applied to the specification of an ML-like language, a simple RISC processor [34]

logical inference systems in both natural deduction and sequent calculus styles [106] and

transition systems [104].

There is also a group at Università di Genova working on object oriented program-

ming in a linear logic framework which use Forum [38].

The class of program formulae permitted by Lygon2 is precisely a normalised form

[106] of the Forum class of program formulae excluding? headed clauses. Forum’s class

of goal formulae is limited to asynchronous formulae. Although an attempt is made in

[106, 109] to add synchronous connectives (such as 9) using logical equivalences the syn-

chronous connectives are not first class citizens – for example there exists a program P

and formula F such that P ` 9xF is provable but where there isn’t a term t such that

P ` F [t=x] is provable. Lygon2 , on the other hand, fully supports synchronous connec-

tives in goals as first class citizens. Note that the optimisations presented in section 4.4

allow Lygon2 programs which only use the Forum subset of goal formulae to execute as

efficiently as Forum. Thus, with the exception of (i) higher orderness (which is orthogo-

nal), and (ii)? headed clauses (which are undesirable in a logic programming language),

Lygon2 is a strict superset of Forum.

6.2 Concurrent Programming

One of the more exciting aspects of linear logic based logic programming languages is

their natural applicability to concurrency. It is interesting to compare the linear logic ap-

proach to concurrent logic programming with other approaches.

There are three main “generations” of concurrent logic programming languages:

1. Committed Choice Guarded Horn Clause Languages
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2. Concurrent Constraint Programming Languages

3. Linear Logic Based Languages

The first generation of concurrent logic programming languages emerged in the early

80’s. These languages dropped backtracking from Prolog and modified unification so it

would suspend under certain conditions. For example, in GHC, unifying a goal A with

the head of clause cannot bind variables inA. If the unification could succeed by binding

a variable in A then it suspends. This suspension is the synchronisation primitive.

Languages in this first generation included Parlog [50], Concurrent Prolog [125, chap-

ters 2 & 5], GHC [125, chapter 4] and, later, Strand [43]. Although these languages have

become less prominent in the research community they are still alive – see for example

[76, 77]. A survey of “first generation” concurrent logic programming can be found in

[126].

The second generation includes such languages as AKL [80] and Oz [39]. These lan-

guages move away from the proof search interpretation of computation and view pro-

cesses as operating over a shared constraint store. As a result it becomes difficult to

view these languages as logic programming languages. Since a general comparison be-

tween linear logic programming languages’ approach to concurrency and more general

approaches (e.g., rendezvous, remote procedure call (RPC) etc.) is beyond the scope of

this section, we shall not discuss these languages further. For a survey of approaches to

concurrency we refer the reader to [17].

Looking at the linear logic way of doing concurrency in a logic programming frame-

work, one of the main differences from first generation languages is that unification is

left unchanged – linear logic provides new operations which allow communication and

synchronisation to be expressed. The primary advantage of this is that linear logic based

concurrent logic programming languages have semantics which are both sound and com-

plete with respect to the logic. Although first generation concurrent logic programming

languages are in general sound, they rely heavily on the programmer guiding the proof

search and are far from complete. Note that second generation languages also suffer from

a lack of completeness with respect to the logical semantics – there is a distinction be-

tween asking a constraint and telling a constraint. If a constraint is used wrongly, say, it is
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made an ask rather than a tell, then the implementation may be unable to find a solution.

In the case where an ask is wrongly made into a tell the system could fail.

Although most of the concurrent logic programming languages based on linear logic

have also sacrificed completeness by opting for “don’t care” nondeterminism (i.e., aban-

doning backtracking) it is possible [131] to use languages with backtracking for concur-

rent programming and guarantee at compile time that the appropriate parts of the program

will not backtrack.

A problem with sacrificing completeness is that it opens a gap between the simple

declarative semantics and the visualisation semantics described in section 3.12. Concur-

rent logic programming languages based on linear logic have, or in some cases have the

potential for, simple logical semantics.

On a more pragmatic level, it appears that linear logic based concurrent logic pro-

gramming languages are more expressive than older proposals. Additionally, they do

not suffer from the problem that multiple inputs to a process need to be merged by the

programmer – leading to both spaghetti code and a loss of efficiency (which can be fixed

by adding an additional construct to the language – see [125, chapters 15 & 16]). This

problem also affects “second generation” concurrent logic programming languages such

as AKL [80, chapter 7].
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Chapter 7

Conclusions and Further Work

This thesis has covered the design, implementation and applications of the linear logic

programming language Lygon.

In order to design Lygon we defined and compared a number of characterisers of logic

programming. The notion of left-focused proof steps was applied to capture the intuition

that a resolution step is guided by the atomic goal. The characterisers were generalised

to the multiple conclusion setting and Lygon was derived using one of the two generali-

sations of our extension of uniformity.

In chapter 4 we tackled the implementation aspects and systematically derived an ef-

ficient set of rules for the management of resources in a linear logic proof. Soundness

and completeness were shown. The problem of active formula selection was also tack-

led and known properties of linear logic were applied to yield a (partial) solution to this

problem.

Finally, in chapter 5 we investigated methodologies and idioms for Lygon program-

ming. A range of program idioms were identified including the use of > to simulate an

affine mode, the use of tokens to control and terminate a concurrent computation, the

use of N to enable non-destructive testing of a linear context and a range of techniques

for manipulating the linear context. Particular applications which were developed in-

cluded concurrent programs, Lygon meta-interpreters and programs operating on graph

data structures.

This thesis has demonstrated that a logic programming language based on multiple
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conclusion linear logic can be systematically derived and effectively implemented. Such

a language has its own set of programming idioms and offers significant additional ex-

pressiveness over classical logic programming languages such as Prolog.

The extra features added by the use of linear logic are useful in solving a variety of

problems and add a number of language features which previously were handled in logic

programming languages using ad hoc and non-logical means. Some features which are

handled in a pure logical fashion in Lygon include concurrency, a form of fact assertion

and retraction and of global state and modelling states and actions.

The work of this thesis forms a solid foundation for further work with Lygon. In addi-

tion to various issues mentioned in sections 3.12, 4.5 and 5.8 there are a number of areas

for further work.

7.1 Implementation

The current Lygon implementation is an interpreter. Whilst it has been satisfactory for

our work it is desirable in the longer term to investigate issues involved in the compilation

of Lygon. In addition to the usual issues associated with compiling Prolog, the efficient

compilation of Lygon requires some knowledge of how the linear context is used by the

program. For example, if it can be determined that a certain predicate does not make any

use of the linear context then we can avoid having to tag the context and pass it to the

predicate. Likewise, if a predicate only makes use of a certain linear fact then we only

need to tag a part of the linear context.

Another application of analyses of context usage concerns active formula selection.

In a goal of the form p , � we can not commit to resolving p against a program clause

since it is possible that� may introduce neg p at some point. If it can be determined that

this is not the case then it may be possible to select p for resolution immediately. This

is also influenced by the connectives which the program uses; given the program p p

and the goal p O G we can not commit to resolving p if G contains >.

Lygon can be seen as “Prolog + linear logic”. Since these two aspects are orthog-

onal it is feasible to consider languages which combine linear logic features with, say,

CLP(<) [79] or Mercury [133]. One strategy for developing a Lygon compiler would be
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to consider a “Mercury + Linear Logic” language and compile it into Mercury.

A second area with significant potential for implementation related further work is

the debugging and visualisation of Lygon programs. The operational semantics of Lygon

programs is considerably more complex than that of Prolog programs due to the presence

of the linear context and the potential for having multiple goals evolving concurrently.

The current Lygon debugger handles the linear context adequately but is not useful for

debugging concurrent programs. In the long run it would seem desirable to make use of

algorithmic debugging [127]. By debugging at the logical level the complex operational

semantics can be avoided. A group at Melbourne University is working on advanced

debugging environments for NU-Prolog, Mercury and Lygon.

7.2 Negation as Failure and Aggregates

Presently Lygon offers simple Negation as Failure a la Prolog. The issue of failure is

significantly more interesting for linear logic than it is for classical logic. A proof can

fail for a larger number of reasons – there could be an excess of resources for example.

Limited forms of negation can actually be done in a pure fashion in Lygon. It is possible

to use a goal of the form ! F to check that the linear context is empty. Likewise, by using

N and a predicate we can check that certain predicates are absent. If the linear predicates

that may be present are p, q and r then the clause consume (((q� r)
 consume)� 1)

and goal consumeN G can be used to check that no linear predicates p are present. It is

unclear to what extent Negation as Failure can be accomplished in pure Lygon.

An aggregate construct collects all solutions for a goal. Intuitively solutions(9xGoal,Solns)

is true if Solns contains a list of variable instantiations for all solutions of Goal:

Goal[x1  t1] ^ Goal[x2  t2] ^ : : : ^ Goal[xn  tn] ^ Solns = [t1; t2; : : : ; tn]

In Lygon the question of resources arises. Should all solutions to Goal split the resources

between them (i.e. use
 instead of ^)? Should all solutions to Goal be required to con-

sume the same resources (i.e. use N instead of ^)? Does it make sense to allow each

solution to consume any resources desired and have the solutions predicate consume the

entire context (i.e., ensure that solutions is always called as solutionsN G)?
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7.3 Other

Languages such as Lygon and Forum cleanly integrate concurrent behavior, backtrack-

ing, updateable state and symbolic computation. Current “hot” areas in which these lan-

guages could potentially be applied include agents (which can be viewed as concurrent

planning (see sections 5.4 and 5.5)), applications on the Web (which generally involve

concurrent symbolic processing) and co-ordination applications.

Other applications for linear logic programming languages include modelling database

transactions and further work in artificial intelligence, such as belief revision.

The derivation of logic programming languages from non-classical logics has so far

focused exclusively on top-down derivations. In the context of deductive databases [139]

the complementary approach is of importance. Under the bottom-up execution model

rules are applied to derive new facts from old facts. The implementation is typically “set

at a time” rather than “tuple at a time” and the notion of a goal plays a much lesser role.

For example, in classical logic, given the rule p(X)! q(X) and the facts p(1) and p(2)

a bottom-up implementation will apply the rule to derive the new facts q(1) and q(2).

The derivation of bottom-up logic programming languages for non-classical logics

has only recently begun to be explored [61]. Applications for the resulting languages

include active databases.
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Appendix A

Proofs for Chapter 3

A.1 Proofs for Section 3.3
PROPOSITION 2

B  A.

Proof: For B to be stronger than A means that for any program and for any goal, the

existence of a proof satisfying criterion B implies that there must be a proof satisfying

criterion A. In this case, the proof satisfying B has no sub-proof of the form � ` which

implies that it has no occurrence of the weakening right rule since in a single conclusioned

setting, weakening right introduces a sequent of the above form. Contraction on the right

is not relevant to a single conclusioned setting and hence the given proof also satisfies

criterion A. �

PROPOSITION 3

A 6 B.

Proof: There exist a goal and a program which have a proof satisfying criterion A but

which do not have a proof satisfying criterion B. Consider the proof:

p ` p
p;:p `

This proof does not use the weakening right rule yet it has an unavoidable proof of a

sequent of the form � ` �



252 APPENDIX A. PROOFS FOR CHAPTER 3

PROPOSITION 4

C 6 A.

Proof: There exist a program and goal which can be proven in a way which satisfies

criterion C but which cannot be proven in a way that satisfies criterion A. Consider the

proof:

q ` q
q;:q `

q;:q ` p(t)
W �R

q;:q ` 9xp(x)

�

PROPOSITION 5

C 6 B.

Proof: B  A and C 6 A, by transitivity we have that C 6 B. �

PROPOSITION 6

A 6 C , B 6 C.

Proof: The (only) proof of 9xp(x) ` 9xp(x) satisfies both criteria A and B yet violates

criterion C. �

PROPOSITION 7

Dstrong  Dweak.

Proof: Obvious from definition. �

PROPOSITION 8

Dweak  C.

Proof: Consider a proof satisfying Dweak which violates C. We show that this proof

can always be transformed into a proof satisfying C. A violation of C is an inference

whose conclusion is of the form � ` 9xF . Since the proof satisfies Dweak and has a

non-atomic goal the sequent must be the conclusion of some right rule. This right rule can

be either 9— in which case we are done — or a structural rule, specifically weakening

(since contraction right is not applicable in a single conclusion setting). By applying the
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following transformation we obtain a proof which satisfies criterion C.

....
� `

� ` 9xF
W �R

....

=)

....
� `

� ` F [t=x]
W �R

� ` 9xF
9 � R

....

�

PROPOSITION 9

Dstrong  C.

Proof: In a proof that satisfies Dstrong, any inference of the form � ` 9xF must be the

conclusion of an 9 rule and hence criterion C is satisfied. �

PROPOSITION 10

C 6 D.

Proof: The only possible proof of the sequent ?p `?p satisfies criterion C yet violates

both criteria Dweak and Dstrong

p ` p
Ax

p `?p
?� R

?p `?p
?� L

�

PROPOSITION 11

Dweak 6 Dstrong.

Proof: The sequent p; p? ` (p
 q) is provable in affine logic (which allows weakening

but not contraction), however the only proof possible, begins by applying the W -R rule.

This proof satisfies criterionDweak yet necessarily violates criterionDstrong. Hence,Dweak 6 

Dstrong.

p ` p

p; p? `
W

p; p? ` p
 q

p ` p p? ` q

p; p? ` p
 q

�
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PROPOSITION 12

A 6 D , B 6 D.

Proof: The proof of 9xF ` 9xF necessarily violates criterion D yet satisfies both cri-

teria A and B. �

PROPOSITION 13

D 6 A.

Proof: The sequent q;:q ` 9xp(x) can be proven in a way which satisfies criterion D

but it cannot be proven without violating A. The proof involves moving :q across to

the succedent. In order to be able to apply the : � L rule we need an empty succedent.

Since the goal is not of the form :F we can only obtain an empty succedent through an

application of W � R which violates criterion A. �

PROPOSITION 14

D 6 B.

Proof: The following proof is uniform according to D but it necessarily involves a suc-

cessful proof of a sequent of the form � `

? `
? ` ?

�

This hinges on the use of the linear logic connective? as an explicit request to check

whether the program is a tautology.

PROPOSITION 15

F  Dstrong  Dweak.

Proof: obvious from definition. �

PROPOSITION 16

D 6 E.

Proof: Consider the example given for criterion E. It satisfies criterion D but not crite-

rion E. �

PROPOSITION 17

F  C.

Proof: By transitivity from F  D and D C. �
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PROPOSITION 18

C 6 F .

Proof: By transitivity from F  D and C 6 D. �

PROPOSITION 19

A 6 F .

Proof: By transitivity from F  D and A 6 D. �

PROPOSITION 20

F  A.

Proof: Consider a sequent � ` G occurring in a proof which satisfies criterion F . There

are two cases:

1. G is non-atomic: the rule used is the rule which introduces its topmost connective.

Hence the rule used is not weakening-right.

2. G is atomic: the rule used is a left or axiom rule and hence is not weakening-right.

Hence the proof satisfies criterion A. �

PROPOSITION 21

F 6 B.

Proof: The only proof of the sequent ?O p ` p is

? `
?� L

p ` p Ax

?O p ` p
O� L

Observe that the proof satisfies criterion F ; however it involves a proof of a sequent of

the form � ` and hence violates criterion B. �

PROPOSITION 22

B 6 F .

Proof: Follows from B 6 D and F  D. �

PROPOSITION 23

E 6 C.
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Proof: The following proof satisfies criterion E yet necessarily violates criterion C.
....

F [y=x] ` F [y=x]

F [y=x] ` 9xF

9xF ` 9xF

�

COROLLARY:E 6 F , E 6 D (since F  C and D C)

PROPOSITION 24

E 6 B.

Proof: Follows by transitivity from F 6 B and F  E. �

PROPOSITION 25

E 6 A.

Proof: The following proof satisfies criterion E yet necessarily violates criterion A.

p ` p
p;:p `

p;:p ` 9xq

�

PROPOSITION 26

B 6 E.

Proof: The proof of the sequent

r( (q( p); q 
 r ` p

satisfies criterion B but necessarily violates criterion E since we need to decompose one

program formula before using another program formula and hence we cannot “focus” on

a single program formula D.

r ` r
q ` q p ` p
q( p; q ` p

( �L

r( (q( p); q; r ` p
( �L

r( (q( p); q 
 r ` p

� L

�

COROLLARY:A 6 E (since B  A)
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LEMMA 27

Let � ` F be a provable sequent where � and F are in a logic subset which satisfies cri-

terion Dstrong. Then all sequents occurring in the proof are in the logic subset satisfying

criterion Dstrong.

Proof: There are two cases: F can be either an atom or a compound formula. If F is a

compound formula then we know that there is a proof of the form
....
�....

�0 ` F 0

� ` F
� �R

Consider now the sequent �0 ` F 0. It has a proof which satisfies criterion Dstrong —

namely �. Hence �0 ` F 0 satisfies Dstrong. If F is atomic then precisely the same situa-

tion entails except that ��R is replaced by ��L. We can apply induction upwards and

conclude that all sequents occurring in the proof satisfy criterion Dstrong. �

LEMMA 28

Let � ` F be a provable sequent where � and F are in a logic subset which satisfies

criterion E. Then all sequents occurring in the proof are in the logic subset satisfying

criterion E.

Proof: The proof is analogous to that of the previous lemma. The main difference is that

a compound goal could be the conclusion of either a left or a right rule. �

PROPOSITION 29

Let � ` � be a sequent in a logic subset which satisfies criteria E and Dstrong and such

that � ` � is provable. Then there exists a proof of � ` � which satisfies criterion F .

Proof: We apply induction from the root of the proof to the leaves. The base case is

an inference with no premises. If the goal is atomic then since criterion E is satisfied

the inference must be an Ax rule. If the goal is compound then since criterion Dstrong is

satisfied the rule must be a right logical rule. In either case the inference satisfies criterion

F . For the induction step consider a sequent at the root of a (sub)-proof. By the induction

hypothesis the sequent satisfies criteria E and Dstrong. There are two cases:

1. The goal is compound: Since criterion Dstrong is satisfied there is a proof which

begins with a right rule where the premise(s) of the rule satisfy criterion Dstrong.
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It is not immediately obvious that the premise(s) must also satisfy criterion E —

lemma 28 guarantees that there exists a proof of the sequent, but the proof may not

necessarily begin with a right rule. We can however transform a proof satisfying

criterion E which begins with a left rule into one beginning with a right rule by

permuting the appropriate right rule down. The right rule is known to permute with

all left rules since criterion Dstrong is satisfied.

2. The goal is atomic: Since criterionE is satisfied there is a left-focused proof of the

sequent. Furthermore the premise(s) of the first inference satisfies both criterion E

(by lemma 28) and criterion Dstrong (by lemma 27).

In either case the appropriate condition for criterion F is met. �

A.2 Proofs for Section 3.5
PROPOSITION 43

B 6 A.

Proof: The following classical logic proof of the sequent p(a)_ p(b) ` 9xp(x) satisfies

criterion B but involves an application of contraction-right.

p(a) ` p(a)
Ax

p(a) ` 9xp(x)
9 � R

p(b) ` p(b)
Ax

p(b) ` 9xp(x)
9 � R

p(a) _ p(b) ` 9xp(x); 9xp(x)
_ � R

p(a) _ p(b) ` 9xp(x)
C � R

�

Note that the proof used the multiplicative presentation of conjunction

�; F1 ` � �0; F2 ` �0

�;�0; F1 _ F2 ` �;�0
_ � L

since the standard additive rule encodes applications of contraction.

PROPOSITION 44

A 6 B.

Proof: There exists a sequent which has a proof satisfying A but which does not have a
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proof satisfying B. Consider the proof

p ` p
p;:p `

This proof does not use weakening or contraction but it has an unavoidable proof of a

sequent of the form � `. �

PROPOSITION 45

Cstrong  C.

Proof: Obvious from definition. �

PROPOSITION 46

C 6 A , Cstrong 6 A.

Proof: There exist a program and goal which can be proven in a way which satisfies crite-

rion C (and Cstrong) but which cannot be proven without violating criterionA. Consider

the sequent q;:q ` 9xp(x). In order to apply the axiom rule we need to eliminate the

formula 9xp(x). This can be only be done using a weakening right rule which violates

criterion A. It is possible to prove this sequent in a way which satisfies criterion C:

q ` q

q ` q; p(t)
W � R

q ` q; 9xp(x)
9 � R

q;:q ` 9xp(x)
: � L

�

PROPOSITION 47

C 6 B , Cstrong 6 B.

Proof: Consider the sequent ? ` 9x(?p(x)). It is provable and there is only a single

possible proof — we need to eliminate the goal formula so we can apply the rule ? �

L. The elimination is done in a way which satisfies criteria C and Cstrong but the proof

involves a subproof of ? ` which violates criterion B.

? `
?� L

? `?p(t)
W ?�R

? ` 9x(?p(x))
9 � R

�
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PROPOSITION 48

A 6 C , B 6 C , A 6 Cstrong , B 6 Cstrong.

Proof: The sequent 9xp(x) ` 9xp(x) can be proven in precisely one way. This proof

satisfies both criteria A and B and violates criteria C and Cstrong.

p(Y ) ` p(Y )

p(Y ) ` 9xp(x)
9 � R

9xp(x) ` 9xp(x)
9 � L

�

PROPOSITION 49

B 6 D , A 6 D.

Proof: Consider the proof of 9xF ` 9xF . �

PROPOSITION 50

DA  A.

Proof: There are two cases. If the goal contains a compound formula then the rule used

to infer the sequent must have been a right rule which introduces a topmost connective

and hence cannot have been a right structural rule. If there are no compound goals then

the sequent must be the conclusion of either anAx or left rule and hence cannot be a right

structural rule. �

PROPOSITION 51

DS  A.

Proof: There are two cases. If there are no atoms in the goal then the rule used to infer the

sequent must have been a right rule which introduces a topmost connective and hence can

not have been a right structural rule. Otherwise the sequent must be either the conclusion

of a right rule as above or the conclusion of Ax or a left rule and in neither case can the

rule be a right structural rule. �

PROPOSITION 52

D  C.

Proof: Consider a sequent of the form � ` 9xF . Since it has only one compound con-

clusion and no atomic goals, it must be the result of an 9 � R rule and hence it satisfies

C. �
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PROPOSITION 53

DA  Cstrong.

Proof: Consider a sequent of the form � ` 9xF;�. According toDA there exists a proof

where this sequent is the conclusion of an 9-R rule. This proof satisfies Cstrong. �

PROPOSITION 54

DS 6 Cstrong.

Proof: Consider the proof of the sequent ` 9xp(x)?; p(1) N p(2). This proof satisfies

DS but not Cstrong. �

PROPOSITION 55

D 6 B.

Proof: The following proof is uniform according to criterion D but it necessarily in-

volves a successful proof of a sequent of the form � `.

? `
? ` ?

�

PROPOSITION 56

C 6 D , Cstrong 6 D.

Proof: Consider the proof of the sequent a� b ` a� b. �

PROPOSITION 57

DS 6 DA.

Proof: Follows by transitivity from the facts that DS 6 Cstrong and DA  Cstrong. �

PROPOSITION 58

DA  DS.

Proof: There are four cases corresponding to the four types of sequents that can occur

in a proof:

� ` C: DA guarantees that the sequent is the conclusion of a right rule which in-

troduces the topmost connective of a formula F 2 C. This satisfies DS.

� ` A: DA guarantees that the proof of the sequent is left-focused which satisfies

DS .
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� ` A; C: DS requires that the proof be either left-focused or the conclusion of a

right rule. DA guarantees the latter.

� `: Neither DA nor DS have any restrictions on this case.

�

PROPOSITION 59

Let DS+ be a criterion that modifies DS by requiring that sequents of the form � ` C

have a proof which introduces the topmost connective of F for all F 2 C. Then DS+ is

equivalent to DA.

Proof: Observe that for sequents which are of the form � ` or � ` A the two definitions

(and indeedDS as well) agree on the constraints to be imposed. For sequents of the form

� ` C the requirement that right connectives permute gives agreement between DA and

DS+.

Consider now sequents which are of the form � ` A; C. This sequent satisfies DA if

we can apply a right rule without a loss of completeness. The only way in whichDA and

DS+ can disagree is if there is a sequent of this form where we need to apply a left-focused

proof step before we can apply a right rule. In order for this to occur we need to have an

impermutability. Since there cannot be an impermutability between right connectives

(by the definition of DS+) the impermutability must be between a right connective and

a left connective. This situation however violates DS since we can use the given imper-

mutability to construct a sequent of the form � ` C where the impermutability prevents

a proof which begins with a right rule. �


